2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINATION algorithm computes the version space containing all hypotheses from H that are consistent with an observed sequence of training examples.

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>AirTemp</th>
<th>Humidity</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>Strong</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>Strong</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Program:

import numpy as np
import pandas as pd

data = pd.DataFrame(data=pd.read_csv('enjoysport.csv'))
concepts = np.array(data.iloc[:,0:-1])
print(concepts)
target = np.array(data.iloc[:, -1])
print(target)

def learn(concepts, target):
 specific_h = concepts[0].copy()
 print("initialization of specific_h and general_h")
 print(specific_h)
 general_h = [['?' for i in range(len(specific_h))] for i in range(len(specific_h))]
 print(general_h)
 for i, h in enumerate(concepts):
 if target[i] == "yes":
 for x in range(len(specific_h)):
 if h[x] != specific_h[x]:
 specific_h[x] = '?'
 general_h[x][x] = '?'
 print(specific_h)
 print(general_h)
 if target[i] == "no":
 for x in range(len(specific_h)):
 if h[x] != specific_h[x]:
 general_h[x][x] = specific_h[x]
 else:
 general_h[x][x] = '?'
 print(" steps of Candidate Elimination Algorithm",i+1)
 print(specific_h)
 print(general_h)
 indices = [i for i, val in enumerate(general_h) if val == ['?','?','?','?','?','?']]
 for i in indices:
 general_h.remove(['?','?','?','?','?','?'])
 return specific_h, general_h
 s_final, g_final = learn(concepts, target)
 print("Final Specific_h:", s_final, sep="\n")
 print("Final General_h:", g_final, sep="\n")
Data Set:

<table>
<thead>
<tr>
<th>Sky</th>
<th>AirTemp</th>
<th>Humidity</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySport</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>warm</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>warm</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cold</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>warm</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output:

Final Specific_h:
['sunny', 'warm', '?', 'strong', '?', '?']

Final General_h:
[['sunny', '?', '?', '?', '?', '?'],
 ['?', 'warm', '?', '?', '?', '?']]