
Software Engineering 17CS45

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 3

CHAPTER 2: SOFTWARE EVOLUTION

Once a system has been deployed, it inevitably has to change if it is to remain useful. There are

many reasons why software change is inevitable

 As business changes and changes to user expectations generate new requirements for

the existing software

 Parts of the software may have to be modified to correct errors that are found in

operation,

 To adapt changes to its hardware and software platform

 To improve its performance or other non-functional characteristics

A key problem for all organizations is implementing and managing change to their existing

software systems.

 Organizations have huge investments in their software systems - they are critical

business assets. To maintain the value of these assets to the business, they must be

changed and updated. The majority of the software budget in large companies is devoted

to changing and evolving existing software rather than developing new software.

A spiral model of development and evolution represents how a software system evolves

through a sequence of multiple releases. (Figure 1)

Figure 1: A spiral model of development and evolution

Software Engineering 17CS45

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2 shows the alternative view of the software evolution life cycle. In this model, they

distinguish between evolution and servicing.

 Evolution: The stage in a software system’s life cycle where it is in operational use and

is evolving as new requirements are proposed and implemented in the system.

 Servicing: At this stage, the software remains useful but the only changes made are

those required to keep it operational i.e. bug fixes and changes to reflect changes in the

software’s environment. No new functionality is added.

 Phase-out: The software may still be used but no further changes are made to it.

Figure 2: Evolution and servicing

2.1 Evolution processes

 Software evolution processes vary depending on the type of software being maintained,

the development processes used in an organization and the skills of the people involved.

 System change proposals are the driver for system evolution in all organizations.

Change proposals may come from existing requirements that have not been

implemented in the released system, requests for new requirements, bug reports from

system stakeholders, and new ideas for software improvement from the system

development team.

 The processes of change identification and system evolution are cyclic and continue

throughout the lifetime of a system as shows in Figure 3.

Figure 3: Change identification and evolution processes

Software Engineering 17CS45

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The software evolution process

 Figure 4 shows an overview of the evolution process. The process includes the

fundamental activities of change analysis, release planning, system implementation, and

releasing a system to customers.

 If the proposed changes are accepted, a new release of the system is planned.

 During release planning, all proposed changes such as fault repair, adaptation, and new

functionality are considered.

 A decision is then made on which changes to implement in the next version of the

system. The changes are implemented and validated, and a new version of the system is

released.

 The process then iterates with a new set of changes proposed for the next release.

Figure 4: The software evolution process

 The Change implementation stage should modify the system specification, design, and

implementation to reflect the changes to the system which is shown in Figure 5.

 New requirements that reflect the system changes are proposed, analyzed, and validated.

System components are redesigned and implemented and the system is retested.

Figure 5: Change Implementation

Change requests arise for three reasons:

1. If a serious system fault occurs that has to be repaired.

2. If changes to the systems operating environment have unexpected effects that disrupt

normal operation.

3. If there are unanticipated changes to the business running the system

Software Engineering 17CS45

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 To make the change quickly means that you may not be able to follow the formal

change analysis process. Rather than modify the requirements and design, make an

emergency fix to the program to solve the immediate problem (Figure 6).

Figure 6: The emergency repair process

2.2 Program Evolution Dynamics

 Program evolution dynamics is the study of system change.

 After several major empirical studies, Lehman and Belady proposed that there were a

number of 'laws' which apply to all systems as they evolved.They are applicable to large

systems developed by large organizations.

Figure: Lehman’s laws

Software Engineering 17CS45

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The first law states that system maintenance is an inevitable process.

 The second law states that, as a system is changed, its structure is degraded.

 The third law states that the system size, time between releases and system errors are

invariant for each system release

 Lehman’s fourth law suggests that most large programming projects work in a

‘saturated’ state. That is, a change to resources or staffing has invisible effects on the

long-term evolution of the system.

 Lehman’s fifth law is concerned with the change increments in each system release.

Adding new functionality to a system inevitably introduces new system faults. The more

functionality added in each release, the more faults there will be.

 The sixth and seventh laws are similar and essentially say that users of software will

become increasingly unhappy with it unless it is maintained and new functionality is

added to it.

2.3 Software Maintenance

 Software maintenance focuses on modifying a program after it has been put into use.

 The term is mostly used for changing custom software. Generic software products are

said to evolve to create new versions.

 Maintenance does not normally involve major changes to the system's architecture.

Changes are implemented by modifying existing components and adding new

components to the system.

There are three different types of software maintenance

1. Fault repairs: Coding errors are usually relatively cheap to correct. Design errors are

more expensive as they may involve rewriting several program components.

Requirements errors are the most expensive to repair because of the extensive system

redesign which may be necessary.

2. Environmental adaptation: When the system’s environment such as the hardware, the

platform operating system, or other support software changes, this types of maintenance

is required. The application system must be modified to adapt it to cope with these

environmental changes.

3. Functionality addition: This type of maintenance is necessary when the system

requirements change in response to organizational or business change.

Software Engineering 17CS45

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 8: Maintenance effort distribution

Figure 9 shows how overall lifetime costs may decrease as more effort is expended during

system development to produce a maintainable system. Because of the potential reduction in

costs of understanding, analysis, and testing, there is a significant multiplier effect when the

system is developed for maintainability.

Figure 9: Development and maintenance costs

For System 1, extra development costs of $25,000 are invested in making the system more

maintainable. This results in a savings of $100,000 in maintenance costs over the lifetime of

the system. This assumes that a percentage increase in development costs results in a

comparable percentage decrease in overall system costs.

The reasons for more expensive Maintenance cost include factors such as:

1. Team stability: After a system has been delivered, the development team to be broken

up and for people to work on new projects. The new team or the individuals responsible

for system maintenance do not understand the system or the background to system

design decisions. They need to spend time understanding the existing system before

implementing changes to it.

2. Poor development practice: The contract to maintain a system is usually separate from

the system development contract. Lack of team stability, if there is no incentive for a

development team to write maintainable software and if a development team cut corners

to save effort during development then software is more difficult to change in the future.

Software Engineering 17CS45

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

3. Staff skills: Maintenance staff are relatively inexperienced and unfamiliar with the

application domain.

4. Program age and structure: as programs age, their structure is degraded and they

become harder to understand and change.

2.3.1 Maintenance prediction

Maintenance prediction is concerned with what system changes might be proposed and what

parts of the system are likely to be the most difficult to maintain and to estimate the overall

maintenance costs for a system in a given time period.

Figure 10 shows these predictions and associated questions.

Figure 10: Maintenance prediction

To evaluate the relationships between a system and its environment, assess the following:

1. The number and complexity of system interfaces:

2. The number of inherently volatile system requirements:

3. The business processes in which the system is used

Predictions of maintainability can be made by assessing the complexity of system components.

Studies have shown that most maintenance effort is spent on a relatively small number of

system components. Complexity depends on:

1. Complexity of control structures

2. Complexity of data structures

3. Object, method (procedure) and module size.

Software Engineering 17CS45

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Process metrics may be used to assess maintainability are as follows:

1. Number of requests for corrective maintenance: An increase in the number of bug

and failure reports may indicate that more errors are being introduced into the program

than are being repaired during the maintenance process.

2. Average time required for impact analysis: This reflects the number of program

components that are affected by the change request. If this time increases, it implies

more and more components are affected and maintainability is decreasing.

3. Average time taken to implement a change request: This is the amount of time need

to modify the system and its documentation. An increase in the time needed to

implement a change may indicate a decline in maintainability.

4. Number of outstanding change requests: An increase in this number over time may

imply a decline in maintainability.

2.3.2 Software Reengineering

Reengineering involves re-documenting the system, refactoring the system architecture,

translating programs to a modern programming language, modifying and updating the

structure, and values of the system’s data.

There are two important benefits from reengineering rather than replacement.

1. Reduced risk: there is a high risk in new software development. There may be

development problems, staffing problems and specification problems.

2. Reduced cost: the cost of reengineering is significantly less than the costs of developing

new software.

Figure 11: The reengineering process

Software Engineering 17CS45

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure11 is a general model of the reengineering process. The input to the process is a legacy

program and the output is an improved and restructured version of the same program.

The activities in reengineering process are as follows:

1. Source code translation: Using a translation tool, the program is converted from an old

programming language to a more modern version of the same language or to a different

language.

2. Reverse engineering: The program is analyzed and information extracted from it. This

helps to document its organization and functionality.

3. Program structure improvement: The control structure of the program is analyzed

and modified to make it easier to read and understand. This can be partially automated

but some manual intervention is usually required.

4. Program modularization: Related parts of the program are grouped together and,

where appropriate, redundancy is removed and architectural refactoring may be

involved. This is a manual process.

5. Data reengineering: The data processed by the program is changed to reflect program

changes and clean up the data.

The costs of reengineering depend on the extent of the work that is carried out. There is a

spectrum of possible approaches to reengineering, as shown in Figure 12.

Figure 12: Reengineering approaches

Software Engineering 17CS45

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2.3.3 Preventative maintenance by refactoring

 Refactoring is the process of making improvements to a program to slow down

degradation through change. Refactoring could be assumed as 'preventative

maintenance' that reduces the problems of future change.

 Refactoring involves modifying a program to improve its structure, reduce its

complexity or make it easier to understand. When you refactor a program, you should

not add functionality but rather concentrate on program improvement.

 Reengineering takes place after a system has been maintained for some time and

maintenance costs are increasing. Automated tools can be used to process and

reengineer a legacy system to create a new system that is more maintainable.

 Refactoring is a continuous process of improvement throughout the development and

evolution process. It is intended to avoid the structure and code degradation that

increases the costs and difficulties of maintaining a system.

'Bad smells' of code are stereotypical situations in which the code of a program can be improved

through refactoring:

1. Duplicate code: The same of very similar code may be included at different places in a

program. This can be removed and implemented as a single method or function that is

called as required.

2. Long methods: If a method is too long, it should be redesigned as a number of shorter

methods.

3. Switch (case) statements: These often involve duplication, where the switch depends

on the type of some value. The switch statements may be scattered around a program.

In object-oriented languages, polymorphism can be used to achieve the same thing.

4. Data clumping: Data clumps occur when the same group of data items reoccur in

several places in a program. These can be replaced with an object encapsulating all of

the data.

5. Speculative generality: This occurs when developers include generality in a program

in case it is required in future. This can often simply be removed.

Software Engineering 17CS45

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

9.4 Legacy system management

Legacy system is an old method, technology, computer system, application program or an

outdated computer system.

Organizations that rely on legacy systems a must make realistic assessment of their legacy

systems and then deciding on the most appropriate strategy.

1. Scrap the system completely: This option should be chosen when the system is not

making an effective contribution to business processes.

2. Leave the system unchanged and continue with regular maintenance: This option

should be chosen when the system is still required but is fairly stable and the system

users make relatively few change requests

3. Reengineer the system to improve its maintainability: This option should be chosen

when the system quality has been degraded by change and where a new change to the

system is still being proposed.

4. Replace all or part of the system with a new system: This option should be chosen

when old system cannot continue in operation or where off-the-shelf systems would

allow the new system to be developed at a reasonable cost.

For example, assume that an organization has 10 legacy systems. Assessing should be done

based on the quality and the business value of each of these systems.

Figure 13: An example of a legacy system assessment

Software Engineering 17CS45

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

In Figure 13, there are four clusters of systems:

1. Low quality, low business value: These systems should be scrapped.

2. Low quality, high business value: These systems are making an important business

contribution so they cannot be scrapped. These systems should be reengineered or may

be replaced, if a suitable system is available.

3. High quality, low business value: It is not worth replacing these systems so normal

system maintenance may be continued if expensive changes are not required and the

system hardware remains in use. If expensive changes become necessary, the software

should be scrapped.

4. High quality, high business value: These systems have to be kept in operation

To assess a software system from a technical perspective, consider both the application

system itself and the environment in which the system operates.

Consider factors during the environment assessment are shown in Figure 14.

Figure 14: Factors used in environment assessment

Software Engineering 17CS45

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

To assess the technical quality of an application system, assess a range of factors as shown in

Figure 15.

Figure 15: Factors used in application assessment

Data collected may be useful in quality assessment are:

1. The number of system change requests: System changes usually corrupt the system

structure and make further changes more difficult.

2. The number of user interfaces: The more interfaces, the more likely that there will be

inconsistencies and redundancies in these interfaces.

3. The volume of data used by the system: The higher the volume of data, more data

inconsistencies that reduce the system quality.

