
Software Engineering 17CS45

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 4

CHAPTER 2: QUALITY MANAGEMENT

2.1 Software Quality

 Software quality is the degree of conformance to explicit or implicit requirements and

expectations.

 The assessment of software quality is a subjective process where the quality

management team has to use their judgment to decide if an acceptable level of quality

has been achieved. The quality management team has to consider whether or not the

software is fit for its intended purpose. This involves answering questions about the

system’s characteristics.

 For example:

1. Have programming and documentation standards been followed in the

development process?

2. Has the software been properly tested?

3. Is the software sufficiently dependable to be put into use?

4. Is the performance of the software acceptable for normal use?

5. Is the software usable?

6. Is the software well-structured and understandable?

 Software quality is not just about whether the software functionality has been correctly

implemented, but it also depends on some of the nonfunctional requirements.

There are 15 important software quality attributes as shown in the below Figure 2.1

Figure 2.1 Software quality attributes

Software Engineering 17CS45

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Process-Based quality

Figure 2.2 Process based quality

 In the above figure 2.2, it explains about the process-based approach to achieve product

quality.

 A manufacturing process involves configuring, setting up, and operating the machines

involved in the process. Once the machines are operating correctly, product quality

naturally follows. Then measure the quality of the product and change the process until

you achieve the quality level that you need.

2.2 Software standards

 Software standards play a very important role in software quality management.

 Standards should be applied to the software product or the software development

process.

 Different tools and methods to support the use of these standards may be chosen.

 Software standards are important because:

1. Standards capture wisdom that is of value to the organization. They are based on

knowledge about the best or most appropriate practice for the company.

2. Standards provide a framework for defining what „quality‟ means in a particular

setting.

3. Standards assist continuity when work carried out by one person is taken up and

continued by another. Standards ensure that all engineers within an organization

adopt the same practices.

Software Engineering 17CS45

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

There are two types of software engineering standards as shown in the figure10:

1. Product standards:

 These apply to the software product being developed.

 Product standards include document standards, such as the structure of requirements

documents, documentation standards, such as a standard comment header for an object

class definition, and coding standards, which define how a programming language

should be used.

2. Process Standards:

 These define the processes that should be followed during software development. They

should encapsulate good development practice.

 Process standards may include definitions of specification, design and validation

processes, process support tools, and a description of the documents that should be

written during these processes.

Figure 2.3 Product and process standards

2.2.1 The ISO 9001 standards framework

 There is an international set of standards that can be used in the development of quality

management systems in all industries, called ISO 9000.

 ISO 9001 applies to organizations that design, develop, and maintain products,

including software. The ISO 9001 standard was originally developed in 1987, with its

most recent revision in 2008.

 The ISO 9001 standard is not itself a standard for software development but is a

framework for developing software standards. It sets out general quality principles,

describes quality processes in general, and lays out the organizational standards and

procedures that should be defined.

Software Engineering 17CS45

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 This framework consists of 9 core processes as shown in the Figure 2.5

Figure 2.4: ISO 9001 core processes

 If an organization is to be ISO 9001 conformant, it must document how its processes

relate to these core processes.

 It must also define and maintain records that demonstrate that the defined organizational

processes have been followed.

 To be conformant with ISO 9001, a company must have defined the types of process

shown in Figure 2.4 and have procedures in place that demonstrate that its quality

processes are being followed. This allows flexibility across industrial sectors and

company sizes.

 The relationships between ISO 9001, organizational quality manuals, and individual

project quality plans are shown in Figure 2.5

Figure 2.5: ISO 9001 and quality management

Software Engineering 17CS45

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 This diagram explains how the ISO 9001 framework can be used as basis for software

quality management process.

 Some software customers demand that their suppliers should be ISO 9001 certified. The

customers can then be confident that the software development company has an

approved quality management system in place.

 Some people think that ISO 9001 certification means that the quality of the software

produced by certified companies will be better than that from uncertified companies.

This is not necessarily true.

2.3 Reviews and Inspections

 Reviews and inspections are quality assurance (QA) activities that check the quality of

project deliverables.

 This involves examining the software, its documentation and records of the process to

discover errors and omissions and to see if quality standards have been followed.

 Reviews are not just about checking conformance to standards. They are also used to

help discover problems and omissions in the software or project documentation.

 The purpose of reviews and inspections is to improve software quality, not to assess the

performance of people in the development team.

2.3.1 The review process

The review process is structured into three phases

Figure 2.6: The software review process

Software Engineering 17CS45

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

1. Pre-review activities:

 These are preparatory activities that are essential for the review to be effective. Pre-

review activities are concerned with review planning and review preparation.

 Review planning involves setting up a review team, arranging a time and place for the

review, and distributing the documents to be reviewed.

 During review preparation, the team may meet to get an overview of the software to be

reviewed. Individual review team members read and understand the software or

documents and relevant standards. They work independently to find errors, omissions,

and departures from standards.

 Reviewers may supply written comments on the software if they cannot attend the

review meeting.

2. The review meeting:

 During the review meeting, an author of the document or program being reviewed

should ‘walk through’ the document with the review team.

 The review should be short—two hours at most. One team member should chair the

review and another should formally record all review decisions and actions to be taken.

3. Post-review activities:

 After a review meeting has finished, the issues and problems raised during the review

must be addressed. This may involve fixing software bugs, refactoring software so that

it conforms to quality standards, or rewriting documents.

 After changes have been made, the review chair may check that the review comments

have all been taken into account. Sometimes, a further review will be required to check

that the changes made cover all of the previous review comments.

2.3.2 Program inspections

 Program inspections are ‘peer reviews’ where team members collaborate to find bugs
in the program that is being developed.

 Program inspections involve team members from different backgrounds who make a

careful, line-by-line review of the program source code.

 They look for defects and problems and describe these at an inspection meeting.

 Defects may be logical errors, anomalies in the code that might indicate an erroneous

condition or features that have been omitted from the code.

 The review team examines the design models or the program code in detail and

highlights anomalies and problems for repair.

 During an inspection, a checklist of common programming errors is used to focus the

search for bugs as shown in Figure 2.7

Software Engineering 17CS45

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2.7: An inspection checklist

 These checklists should be regularly updated, as new types of defects are found. The

items in the checklist vary according to programming language because of the different

levels of checking that are possible at compile-time.

 For example, a Java compiler checks that functions have the correct number of

parameters but a C compiler does not.

Software Engineering 17CS45

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2.4 Software Measurement and Metrics

Software measurement

 Software measurement is concerned with deriving a numeric value or profile for an

attribute of a software component, system, or process.

 By comparing these values to each other and to the standards that apply across an

organization, you may be able to draw conclusions about the quality of software.

 For example, say an organization intends to introduce a new software-testing tool.

Before introducing the tool, record the number of software defects discovered in a given

time. After using the tool for some time, repeat this process. If more defects have been

found in the same amount of time, after the tool has been introduced, then you may

decide that it provides useful support for the software validation process.

 The long-term goal of software measurement is to use measurement in place of reviews

to make judgments about software quality.

Software metric

 A software metric is a characteristic of a software system, system documentation, or

development process that can be objectively measured.

 Examples of metrics include the size of a product in lines of code, number of reported

faults in a delivered software product, the number of person-days required to

develop a system component.

There are two types of software metrics.

1. Control (Process) metrics

 Control metrics are usually associated with software processes control metrics

support process management.

 Examples of control or process metrics are the average effort and the time required

to repair reported defects.

2. Predictor metrics

 Predictor metrics are associated with the software itself and are known as ‘product
metrics’ which helps to predict characteristics of the software

 Examples of predictor metrics are the cyclomatic complexity of a module, the

average length of identifiers in a program, and the number of attributes and

operations associated with object classes in a design.

Software Engineering 17CS45

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2.8 Predictor and control measurements

Both control and predictor metrics may influence management decision making, as shown in

Figure 2.8.

Managers use process measurements to decide if process changes should be made, and

predictor metrics to help estimate the effort required to make software changes

There are two ways in which measurements of a software system may be used:

1. To assign a value to system quality attributes: By measuring the characteristics of

system components, such as their cyclomatic complexity (it is the total number of

control statements used in a program), and then aggregating these measurements, you

can assess system quality attributes, such as maintainability.

2. To identify the system components whose quality is substandard Measurements:

can identify individual components with characteristics that deviate from the norm. For

example, you can measure components to discover those with the highest complexity.

These are most likely to contain bugs because the complexity makes them harder to

understand.

Figure 2.9 shows the relationship between some external software quality attributes and

internal attributes.

 Quality attributes such as maintainability, understandability and usability are external

attributes that relate to how developers and users experience the software.

 Internal attributes are related to the quality characteristics that one is concerned with

size, complexity.

Software Engineering 17CS45

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2.9: Relationships between internal and external software

If the measure of the internal attribute is to be a useful predictor of the external software

characteristic, three conditions must hold:

1. The internal attribute must be measured accurately.

2. A relationship must exist between the attribute that can be measured and the external

quality attribute that is of interest. That is, the value of the quality attribute must be

related to the value of the attribute that can be measured.

3. This relationship between the internal and external attributes must be understood,

validated, and expressed in terms of a formula or model

2.4.1 Product metrics

Product metrics are predictor metrics that are used to measure internal attributes of a software

system. Examples of product metrics include the system size, measured in lines of code, or the

number of methods associated with each object class.

Product metrics fall into two classes:

1. Dynamic metrics: which are collected by measurements made of a program in

execution. These metrics can be collected during system testing or after the system has

gone into use. An example might be the number of bug reports or the time taken to

complete a computation.

2. Static metrics: which are collected by measurements made of representations of the

system, such as the design, program, or documentation. Examples of static metrics are

the code size and the average length of identifiers used

Software Engineering 17CS45

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The metrics in Figure 2.10 are applicable to any program but more specific object oriented

(OO) metrics have also been proposed.

Figure 2.10: Static software product metrics

Figure 2.11 summarizes Chidamber and Kemerer‟s suite (sometimes called the CK suite) of

six object oriented metrics (1994).

Software Engineering 17CS45

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2.11: The CK object-oriented metrics suite

2.4.2 Software component analysis

Each system component can be analyzed separately using a range of metrics.

The key stages in this component measurement process are shown in the Figure 2.12.

1. Choose measurements to be made: The questions that the measurement is intended to

answer should be formulated and the measurements required to answer these questions

defined.

2. Select components to be assessed: You may not need to assess metric values for all of

the components in a software system. Sometimes, you can select a representative

selection of components for measurement, allowing you to make an overall assessment

of system quality.

3. Measure component characteristics: The selected components are measured and the

associated metric values computed. This normally involves processing the component

representation (design, code, etc.) using an automated data collection tool.

Software Engineering 17CS45

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

4. Identify anomalous measurements: After the component measurements have been

made, you then compare them with each other and to previous measurements that have

been recorded in a measurement database. You should look for unusually high or low

values for each metric.

5. Analyze anomalous components: When you have identified components that have

anomalous values, you should examine them to decide whether or not these anomalous

metric values mean that the quality of the component is compromised. An anomalous

metric value for complexity (say) does not necessarily mean a poor quality component.

There may be some other reason for the high value, so may not mean that there are

component quality problems.

Figure 2.12: The process of product measurement

