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MODULE 2 
 

DECISION TREE LEARNING 
 

 

Decision tree learning is a method for approximating discrete-valued target functions, in which 

the learned function is represented by a decision tree.  

 

 

DECISION TREE REPRESENTATION 

 

 Decision trees classify instances by sorting them down the tree from the root to some 

leaf node, which provides the classification of the instance.  

 Each node in the tree specifies a test of some attribute of the instance, and each branch 

descending from that node corresponds to one of the possible values for this attribute. 

 An instance is classified by starting at the root node of the tree, testing the attribute 

specified by this node, then moving down the tree branch corresponding to the value of 

the attribute in the given example. This process is then repeated for the subtree rooted 

at the new node. 

 

 

 
 

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it 

through the tree to the appropriate leaf node, then returning the classification associated with 

this leaf 
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 Decision trees represent a disjunction of conjunctions of constraints on the attribute 

values of instances.  

 Each path from the tree root to a leaf corresponds to a conjunction of attribute tests, 

and the tree itself to a disjunction of these conjunctions 

 

For example, the decision tree shown in above figure corresponds to the expression  

(Outlook = Sunny ∧ Humidity = Normal)  

∨  (Outlook = Overcast)  

∨  (Outlook = Rain ∧ Wind = Weak) 

 

 

 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 

 

Decision tree learning is generally best suited to problems with the following characteristics: 

 

1. Instances are represented by attribute-value pairs – Instances are described by a 

fixed set of attributes and their values 

 

2. The target function has discrete output values – The decision tree assigns a Boolean 

classification (e.g., yes or no) to each example. Decision tree methods easily extend to 

learning functions with more than two possible output values. 

 

3. Disjunctive descriptions may be required 

 

4. The training data may contain errors – Decision tree learning methods are robust to 

errors, both errors in classifications of the training examples and errors in the attribute 

values that describe these examples. 

 

5. The training data may contain missing attribute values – Decision tree methods can 

be used even when some training examples have unknown values 
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THE BASIC DECISION TREE LEARNING ALGORITHM 

 

The basic algorithm is ID3 which learns decision trees by constructing them top-down 

 

 

ID3(Examples, Target_attribute, Attributes) 

 

Examples are the training examples. Target_attribute is the attribute whose value is to be 

predicted by the tree. Attributes is a list of other attributes that may be tested by the 

learned decision tree. Returns a decision tree that correctly classifies the given Examples. 

 

 Create a Root node for the tree 

 If all Examples are positive, Return the single-node tree Root, with label = + 

 If all Examples are negative, Return the single-node tree Root, with label = - 

 If Attributes is empty, Return the single-node tree Root, with label = most common value 

of Target_attribute in Examples 

 

 Otherwise Begin 

 A ← the attribute from Attributes that best* classifies Examples 

 The decision attribute for Root ← A 

 For each possible value, vi, of A, 

 Add a new tree branch below Root, corresponding to the test A = vi 

 Let Examples vi, be the subset of Examples that have value vi for A 

 If Examples vi , is empty 

 Then below this new branch add a leaf node with label = most common 

value of Target_attribute in Examples 

 Else below this new branch add the subtree 

ID3(Examples vi, Targe_tattribute, Attributes – {A})) 

 End 

 Return Root 

 

* The best attribute is the one with highest information gain 

 

TABLE: Summary of the ID3 algorithm specialized to learning Boolean-valued functions. ID3 

is a greedy algorithm that grows the tree top-down, at each node selecting the attribute that best 

classifies the local training examples. This process continues until the tree perfectly classifies 

the training examples, or until all attributes have been used 
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Which Attribute Is the Best Classifier? 

 

 The central choice in the ID3 algorithm is selecting which attribute to test at each node 

in the tree. 

 A statistical property called information gain that measures how well a given attribute 

separates the training examples according to their target classification.  

 ID3 uses information gain measure to select among the candidate attributes at each 

step while growing the tree. 

 

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

 

To define information gain, we begin by defining a measure called entropy. Entropy 

measures the impurity of a collection of examples. 

 

Given a collection S, containing positive and negative examples of some target concept, the 

entropy of S relative to this Boolean classification is 

 

 
Where,  

p+ is the proportion of positive examples in S 

p- is the proportion of negative examples in S.  

 

 

Example: 

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 

negative examples. Then the entropy of S relative to this boolean classification is   

 

 
 

 

 The entropy is 0 if all members of S belong to the same class 

 The entropy is 1 when the collection contains an equal number of positive and negative 

examples 

 If the collection contains unequal numbers of positive and negative examples, the 

entropy is between 0 and 1 
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INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

 

 Information gain, is the expected reduction in entropy caused by partitioning the 

examples according to this attribute. 

 The information gain, Gain(S, A) of an attribute A, relative to a collection of examples 

S, is defined as 

 
 

Example: Information gain 

 

Let,  Values(Wind) = {Weak, Strong} 

S  = [9+, 5−] 

S
Weak

  = [6+, 2−] 

S
Strong

  = [3+, 3−] 

 
Information gain of attribute Wind: 

Gain(S, Wind)  = Entropy(S) − 8/14 Entropy (S
Weak

) − 6/14 Entropy (S
Strong

)  

= 0.94 – (8/14)* 0.811 – (6/14) *1.00   

= 0.048 
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An Illustrative Example 

 

 To illustrate the operation of ID3, consider the learning task represented by the training 

examples of below table.  

 Here the target attribute PlayTennis, which can have values yes or no for different days. 

 Consider the first step through the algorithm, in which the topmost node of the decision 

tree is created. 

 
Day Outlook Temperature Humidity Wind PlayTennis 

D1 Sunny Hot High Weak No 
D2 Sunny Hot High Strong No 
D3 Overcast Hot High Weak Yes 
D4 Rain Mild High Weak Yes 
D5 Rain Cool Normal Weak Yes 
D6 Rain Cool Normal Strong No 
D7 Overcast Cool Normal Strong Yes 
D8 Sunny Mild High Weak No 
D9 Sunny Cool Normal Weak Yes 
D10 Rain Mild Normal Weak Yes 
D11 Sunny Mild Normal Strong Yes 
D12 Overcast Mild High Strong Yes 
D13 Overcast Hot Normal Weak Yes 
D14 Rain Mild High Strong No 

 

 ID3 determines the information gain for each candidate attribute (i.e., Outlook, 

Temperature, Humidity, and Wind), then selects the one with highest information gain. 
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 The information gain values for all four attributes are 

Gain(S, Outlook)   = 0.246 

Gain(S, Humidity)   = 0.151 

Gain(S, Wind)   = 0.048 

Gain(S, Temperature)  = 0.029 
 

 According to the information gain measure, the Outlook attribute provides the best 

prediction of the target attribute, PlayTennis, over the training examples. Therefore, 

Outlook is selected as the decision attribute for the root node, and branches are created 

below the root for each of its possible values i.e., Sunny, Overcast, and Rain. 
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SRain = { D4, D5, D6, D10, D14} 

 

Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019 

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019 

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970 
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HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING 

 

 ID3 can be characterized as searching a space of hypotheses for one that fits the training 

examples. 

 The hypothesis space searched by ID3 is the set of possible decision trees. 

 ID3 performs a simple-to complex, hill-climbing search through this hypothesis space, 

beginning with the empty tree, then considering progressively more elaborate 

hypotheses in search of a decision tree that correctly classifies the training data 

 

 
 

Figure: Hypothesis space search by ID3. ID3 searches through the space of possible decision 

trees from simplest to increasingly complex, guided by the information gain heuristic. 

 

 

By viewing ID3 in terms of its search space and search strategy, there are some insight into its 

capabilities and limitations 

 

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued 

functions, relative to the available attributes. Because every finite discrete-valued 

function can be represented by some decision tree 

ID3 avoids one of the major risks of methods that search incomplete hypothesis spaces: 

that the hypothesis space might not contain the target function. 
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2. ID3 maintains only a single current hypothesis as it searches through the space of 

decision trees.  

For example, with the earlier version space candidate elimination method, which 

maintains the set of all hypotheses consistent with the available training examples.  

 

By determining only a single hypothesis, ID3 loses the capabilities that follow from 

explicitly representing all consistent hypotheses.  

For example, it does not have the ability to determine how many alternative decision 

trees are consistent with the available training data, or to pose new instance queries that 

optimally resolve among these competing hypotheses 

 

3. ID3 in its pure form performs no backtracking in its search. Once it selects an attribute 

to test at a particular level in the tree, it never backtracks to reconsider this choice. 

In the case of ID3, a locally optimal solution corresponds to the decision tree it selects 

along the single search path it explores. However, this locally optimal solution may be 

less desirable than trees that would have been encountered along a different branch of 

the search. 

 

4. ID3 uses all training examples at each step in the search to make statistically based 

decisions regarding how to refine its current hypothesis. 

One advantage of using statistical properties of all the examples is that the resulting 

search is much less sensitive to errors in individual training examples.  

ID3 can be easily extended to handle noisy training data by modifying its termination 

criterion to accept hypotheses that imperfectly fit the training data. 

 

 

INDUCTIVE BIAS IN DECISION TREE LEARNING 

 

Inductive bias is the set of assumptions that, together with the training data, deductively justify 

the classifications assigned by the learner to future instances 

 

Given a collection of training examples, there are typically many decision trees consistent with 

these examples. Which of these decision trees does ID3 choose? 

 

ID3 search strategy  

 Selects in favour of shorter trees over longer ones 

 Selects trees that place the attributes with highest information gain closest to the root. 
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Approximate inductive bias of ID3: Shorter trees are preferred over larger trees 

 

 Consider an algorithm that begins with the empty tree and searches breadth first through 

progressively more complex trees. 

 First considering all trees of depth 1, then all trees of depth 2, etc.  

 Once it finds a decision tree consistent with the training data, it returns the smallest 

consistent tree at that search depth (e.g., the tree with the fewest nodes). 

 Let us call this breadth-first search algorithm BFS-ID3.  

 BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are 

preferred over longer trees. 

 

A closer approximation to the inductive bias of ID3: Shorter trees are preferred over longer 

trees. Trees that place high information gain attributes close to the root are preferred over 

those that do not. 

 

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy heuristic 

search to attempt to find the shortest tree without conducting the entire breadth-first 

search through the hypothesis space. 

 Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibits 

a more complex bias than BFS-ID3.  

 In particular, it does not always find the shortest consistent tree, and it is biased to favour 

trees that place attributes with high information gain closest to the root. 

 

Restriction Biases and Preference Biases 

 

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE-

ELIMINATION Algorithm. 

ID3: 

 ID3 searches a complete hypothesis space 

 It searches incompletely through this space, from simple to complex hypotheses, until 

its termination condition is met 

 Its inductive bias is solely a consequence of the ordering of hypotheses by its search 

strategy. Its hypothesis space introduces no additional bias 

 

CANDIDATE-ELIMINATION Algorithm: 

 The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete 

hypothesis space 

 It searches this space completely, finding every hypothesis consistent with the training 

data. 

 Its inductive bias is solely a consequence of the expressive power of its hypothesis 

representation. Its search strategy introduces no additional bias 
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Preference bias – The inductive bias of ID3 is a preference for certain hypotheses over others 

(e.g., preference for shorter hypotheses over larger hypotheses), with no hard restriction on the 

hypotheses that can be eventually enumerated. This form of bias is called a preference bias or 

a search bias. 

 

Restriction bias – The bias of the CANDIDATE ELIMINATION algorithm is in the form of a 

categorical restriction on the set of hypotheses considered. This form of bias is typically called 

a restriction bias or a language bias. 

 

 

Which type of inductive bias is preferred in order to generalize beyond the training data, a 

preference bias or restriction bias? 

 

 A preference bias is more desirable than a restriction bias, because it allows the learner 

to work within a complete hypothesis space that is assured to contain the unknown target 

function.  

 In contrast, a restriction bias that strictly limits the set of potential hypotheses is 

generally less desirable, because it introduces the possibility of excluding the unknown 

target function altogether. 

 

 

Why Prefer Short Hypotheses? 

 

Occam's razor 

 

 Occam's razor: is the problem-solving principle that the simplest solution tends to be 

the right one. When presented with competing hypotheses to solve a problem, one 

should select the solution with the fewest assumptions. 

 

 Occam's razor: “Prefer the simplest hypothesis that fits the data”. 

 

Argument in favour of Occam’s razor: 

 

 Fewer short hypotheses than long ones: 

 Short hypotheses fits the training data which are less likely to be coincident 

 Longer hypotheses fits the training data might be coincident.  

 

 Many complex hypotheses that fit the current training data but fail to generalize 

correctly to subsequent data. 
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Argument opposed: 

 There are few small trees, and our priori chance of finding one consistent with an 

arbitrary set of data is therefore small. The difficulty here is that there are very many 

small sets of hypotheses that one can define but understood by fewer learner. 

 The size of a hypothesis is determined by the representation used internally by the 

learner. Occam's razor will produce two different hypotheses from the same training 

examples when it is applied by two learners, both justifying their contradictory 

conclusions by Occam's razor. On this basis we might be tempted to reject Occam's 

razor altogether. 

 

 

 

 

ISSUES IN DECISION TREE LEARNING 

 

Issues in learning decision trees include 

1. Avoiding Overfitting the Data 

Reduced error pruning 

Rule post-pruning 

2. Incorporating Continuous-Valued Attributes 

3. Alternative Measures for Selecting Attributes 

4. Handling Training Examples with Missing Attribute Values 

5. Handling Attributes with Differing Costs 

 

 

1. Avoiding Overfitting the Data 

 

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify 

the training examples but it can lead to difficulties when there is noise in the data, or 

when the number of training examples is too small to produce a representative sample 

of the true target function. This algorithm can produce trees that overfit the training 

examples. 

 

 Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit 

the training data if there exists some alternative hypothesis h' ∈ H, such that h has 

smaller error than h' over the training examples, but h' has a smaller error than h over 

the entire distribution of instances. 
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The below figure illustrates the impact of overfitting in a typical application of decision tree 

learning. 

 
 

 The horizontal axis of this plot indicates the total number of nodes in the decision tree, 

as the tree is being constructed. The vertical axis indicates the accuracy of predictions 

made by the tree.  

 The solid line shows the accuracy of the decision tree over the training examples. The 

broken line shows accuracy measured over an independent set of test example  

 The accuracy of the tree over the training examples increases monotonically as the tree 

is grown. The accuracy measured over the independent test examples first increases, 

then decreases. 

 

 

How can it be possible for tree h to fit the training examples better than h', but for it to perform 

more poorly over subsequent examples? 

1. Overfitting can occur when the training examples contain random errors or noise 

2. When small numbers of examples are associated with leaf nodes. 

 

 

Noisy Training Example 

 

 Example 15: <Sunny, Hot, Normal, Strong, -> 

 Example is noisy because the correct label is + 

 Previously constructed tree misclassifies it 
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Approaches to avoiding overfitting in decision tree learning 

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where 

it perfectly classifies the training data 

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree 

 

Criterion used to determine the correct final tree size 

 Use a separate set of examples, distinct from the training examples, to evaluate the utility 

of post-pruning nodes from the tree 

 Use all the available data for training, but apply a statistical test to estimate whether 

expanding (or pruning) a particular node is likely to produce an improvement beyond 

the training set 

 Use measure of the complexity for encoding the training examples and the decision tree, 

halting growth of the tree when this encoding size is minimized. This approach is called 

the Minimum Description Length 

 

MDL – Minimize : size(tree) + size (misclassifications(tree)) 
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Reduced-Error Pruning 

 

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be 

candidates for pruning 

 Pruning a decision node consists of removing the subtree rooted at that node, making 

it a leaf node, and assigning it the most common classification of the training examples 

affiliated with that node 

 Nodes are removed only if the resulting pruned tree performs no worse than-the original 

over the validation set.  

 Reduced error pruning has the effect that any leaf node added due to coincidental 

regularities in the training set is likely to be pruned because these same coincidences are 

unlikely to occur in the validation set 

 

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below 

figure 

 
 

 The additional line in figure shows accuracy over the test examples as the tree is pruned. 

When pruning begins, the tree is at its maximum size and lowest accuracy over the test 

set. As pruning proceeds, the number of nodes is reduced and accuracy over the test set 

increases. 

 The available data has been split into three subsets: the training examples, the validation 

examples used for pruning the tree, and a set of test examples used to provide an 

unbiased estimate of accuracy over future unseen examples. The plot shows accuracy 

over the training and test sets. 
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Pros and Cons 

Pro: Produces smallest version of most accurate T
 

 
(subtree of T) 

Con: Uses less data to construct T 

Can afford to hold out D
validation

?. If not (data is too limited), may make error worse 

(insufficient D
train

) 

 

 

Rule Post-Pruning 

 

Rule post-pruning is successful method for finding high accuracy hypotheses 

 

 Rule post-pruning involves the following steps: 

 Infer the decision tree from the training set, growing the tree until the training data is fit 

as well as possible and allowing overfitting to occur. 

 Convert the learned tree into an equivalent set of rules by creating one rule for each path 

from the root node to a leaf node. 

 Prune (generalize) each rule by removing any preconditions that result in improving its 

estimated accuracy.  

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence 

when classifying subsequent instances. 

 

 

Converting a Decision Tree into Rules 
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For example, consider the decision tree. The leftmost path of the tree in below figure is 

translated into the rule.  

   IF (Outlook = Sunny) ^ (Humidity = High) 

   THEN PlayTennis = No 

 

Given the above rule, rule post-pruning would consider removing the preconditions 

   (Outlook = Sunny) and (Humidity = High) 

 

 It would select whichever of these pruning steps produced the greatest improvement in 

estimated rule accuracy, then consider pruning the second precondition as a further 

pruning step.  

 No pruning step is performed if it reduces the estimated rule accuracy. 

 

 

There are three main advantages by converting the decision tree to rules before pruning 

 

1. Converting to rules allows distinguishing among the different contexts in which a 

decision node is used. Because each distinct path through the decision tree node 

produces a distinct rule, the pruning decision regarding that attribute test can be made 

differently for each path. 

2. Converting to rules removes the distinction between attribute tests that occur near the 

root of the tree and those that occur near the leaves. Thus, it avoid messy bookkeeping 

issues such as how to reorganize the tree if the root node is pruned while retaining part 

of the subtree below this test. 

3. Converting to rules improves readability. Rules are often easier for to understand. 

 

 

 

2. Incorporating Continuous-Valued Attributes 

 

Continuous-valued decision attributes can be incorporated into the learned tree.  

 

There are two methods for Handling Continuous Attributes 

1. Define new discrete valued attributes that partition the continuous attribute value into a 

discrete set of intervals.  

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C} 

 

2. Using thresholds for splitting nodes 

e.g., A ≤ a produces subsets A ≤ a and A > a 
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What threshold-based Boolean attribute should be defined based on Temperature? 

 

 
 

 Pick a threshold, c, that produces the greatest information gain 

 In the current example, there are two candidate thresholds, corresponding to the values 

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2. 

 The information gain can then be computed for each of the candidate attributes, 

Temperature >54, and Temperature >85 and the best can be selected (Temperature >54) 

 

 

3. Alternative Measures for Selecting Attributes 

 

 The problem is if attributes with many values, Gain will select it ? 

 Example: consider the attribute Date, which has a very large number of possible values. 

(e.g., March 4, 1979). 

 If this attribute is added to the PlayTennis data, it would have the highest information 

gain of any of the attributes. This is because Date alone perfectly predicts the target 

attribute over the training data. Thus, it would be selected as the decision attribute for 

the root node of the tree and lead to a tree of depth one, which perfectly classifies the 

training data.  

 This decision tree with root node Date is not a useful predictor because it perfectly 

separates the training data, but poorly predict on subsequent examples. 

 

One Approach: Use GainRatio instead of Gain 

 

The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive 

to how broadly and uniformly the attribute splits the data 

 

 
 

Where, Si is subset of S, for which attribute A has value vi 
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4. Handling Training Examples with Missing Attribute Values 

 

The data which is available may contain missing values for some attributes 

Example: Medical diagnosis 

 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …> 

 Sometimes values truly unknown, sometimes low priority (or cost too high) 

 

Strategies for dealing with the missing attribute value 

 If node n test A, assign most common value of A among other training examples sorted 

to node n 

 Assign most common value of A among other training examples with same target value 

 Assign a probability pi to each of the possible values vi of A rather than simply assigning 

the most common value to A(x) 

 

5. Handling Attributes with Differing Costs 

 

 In some learning tasks the instance attributes may have associated costs. 

 For example: In learning to classify medical diseases, the patients described in terms of 

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.  

 These attributes vary significantly in their costs, both in terms of monetary cost and cost 

to patient comfort 

 Decision trees use low-cost attributes where possible, depends only on high-cost 

attributes only when needed to produce reliable classifications 

 

How to Learn A Consistent Tree with Low Expected Cost? 

 

One approach is replace Gain by Cost-Normalized-Gain 

 

Examples of normalization functions 

 

 


