
Machine Learning 15CS73

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 2

DECISION TREE LEARNING

Decision tree learning is a method for approximating discrete-valued target functions, in which

the learned function is represented by a decision tree.

DECISION TREE REPRESENTATION

 Decision trees classify instances by sorting them down the tree from the root to some

leaf node, which provides the classification of the instance.

 Each node in the tree specifies a test of some attribute of the instance, and each branch

descending from that node corresponds to one of the possible values for this attribute.

 An instance is classified by starting at the root node of the tree, testing the attribute

specified by this node, then moving down the tree branch corresponding to the value of

the attribute in the given example. This process is then repeated for the subtree rooted

at the new node.

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it

through the tree to the appropriate leaf node, then returning the classification associated with

this leaf

Machine Learning 15CS73

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Decision trees represent a disjunction of conjunctions of constraints on the attribute

values of instances.

 Each path from the tree root to a leaf corresponds to a conjunction of attribute tests,

and the tree itself to a disjunction of these conjunctions

For example, the decision tree shown in above figure corresponds to the expression

(Outlook = Sunny ∧ Humidity = Normal)

∨ (Outlook = Overcast)

∨ (Outlook = Rain ∧ Wind = Weak)

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

Decision tree learning is generally best suited to problems with the following characteristics:

1. Instances are represented by attribute-value pairs – Instances are described by a

fixed set of attributes and their values

2. The target function has discrete output values – The decision tree assigns a Boolean

classification (e.g., yes or no) to each example. Decision tree methods easily extend to

learning functions with more than two possible output values.

3. Disjunctive descriptions may be required

4. The training data may contain errors – Decision tree learning methods are robust to

errors, both errors in classifications of the training examples and errors in the attribute

values that describe these examples.

5. The training data may contain missing attribute values – Decision tree methods can

be used even when some training examples have unknown values

Machine Learning 15CS73

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

THE BASIC DECISION TREE LEARNING ALGORITHM

The basic algorithm is ID3 which learns decision trees by constructing them top-down

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be

predicted by the tree. Attributes is a list of other attributes that may be tested by the

learned decision tree. Returns a decision tree that correctly classifies the given Examples.

 Create a Root node for the tree

 If all Examples are positive, Return the single-node tree Root, with label = +

 If all Examples are negative, Return the single-node tree Root, with label = -

 If Attributes is empty, Return the single-node tree Root, with label = most common value

of Target_attribute in Examples

 Otherwise Begin

 A ← the attribute from Attributes that best* classifies Examples

 The decision attribute for Root ← A

 For each possible value, vi, of A,

 Add a new tree branch below Root, corresponding to the test A = vi

 Let Examples vi, be the subset of Examples that have value vi for A

 If Examples vi , is empty

 Then below this new branch add a leaf node with label = most common

value of Target_attribute in Examples

 Else below this new branch add the subtree

ID3(Examples vi, Targe_tattribute, Attributes – {A}))

 End

 Return Root

* The best attribute is the one with highest information gain

TABLE: Summary of the ID3 algorithm specialized to learning Boolean-valued functions. ID3

is a greedy algorithm that grows the tree top-down, at each node selecting the attribute that best

classifies the local training examples. This process continues until the tree perfectly classifies

the training examples, or until all attributes have been used

Machine Learning 15CS73

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Which Attribute Is the Best Classifier?

 The central choice in the ID3 algorithm is selecting which attribute to test at each node

in the tree.

 A statistical property called information gain that measures how well a given attribute

separates the training examples according to their target classification.

 ID3 uses information gain measure to select among the candidate attributes at each

step while growing the tree.

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

To define information gain, we begin by defining a measure called entropy. Entropy

measures the impurity of a collection of examples.

Given a collection S, containing positive and negative examples of some target concept, the

entropy of S relative to this Boolean classification is

Where,

p+ is the proportion of positive examples in S

p- is the proportion of negative examples in S.

Example:

Suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5

negative examples. Then the entropy of S relative to this boolean classification is

 The entropy is 0 if all members of S belong to the same class

 The entropy is 1 when the collection contains an equal number of positive and negative

examples

 If the collection contains unequal numbers of positive and negative examples, the

entropy is between 0 and 1

Machine Learning 15CS73

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

 Information gain, is the expected reduction in entropy caused by partitioning the

examples according to this attribute.

 The information gain, Gain(S, A) of an attribute A, relative to a collection of examples

S, is defined as

Example: Information gain

Let, Values(Wind) = {Weak, Strong}

S = [9+, 5−]

S
Weak

 = [6+, 2−]

S
Strong

 = [3+, 3−]

Information gain of attribute Wind:

Gain(S, Wind) = Entropy(S) − 8/14 Entropy (S
Weak

) − 6/14 Entropy (S
Strong

)

= 0.94 – (8/14)* 0.811 – (6/14) *1.00

= 0.048

Machine Learning 15CS73

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

An Illustrative Example

 To illustrate the operation of ID3, consider the learning task represented by the training

examples of below table.

 Here the target attribute PlayTennis, which can have values yes or no for different days.

 Consider the first step through the algorithm, in which the topmost node of the decision

tree is created.

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

 ID3 determines the information gain for each candidate attribute (i.e., Outlook,

Temperature, Humidity, and Wind), then selects the one with highest information gain.

Machine Learning 15CS73

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The information gain values for all four attributes are

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029

 According to the information gain measure, the Outlook attribute provides the best

prediction of the target attribute, PlayTennis, over the training examples. Therefore,

Outlook is selected as the decision attribute for the root node, and branches are created

below the root for each of its possible values i.e., Sunny, Overcast, and Rain.

Machine Learning 15CS73

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

SRain = { D4, D5, D6, D10, D14}

Gain (SRain , Humidity) = 0.970 – (2/5)1.0 – (3/5)0.917 = 0.019

Gain (SRain , Temperature) =0.970 – (0/5)0.0 – (3/5)0.918 – (2/5)1.0 = 0.019

Gain (SRain , Wind) =0.970 – (3/5)0.0 – (2/5)0.0 = 0.970

Machine Learning 15CS73

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

HYPOTHESIS SPACE SEARCH IN DECISION TREE LEARNING

 ID3 can be characterized as searching a space of hypotheses for one that fits the training

examples.

 The hypothesis space searched by ID3 is the set of possible decision trees.

 ID3 performs a simple-to complex, hill-climbing search through this hypothesis space,

beginning with the empty tree, then considering progressively more elaborate

hypotheses in search of a decision tree that correctly classifies the training data

Figure: Hypothesis space search by ID3. ID3 searches through the space of possible decision

trees from simplest to increasingly complex, guided by the information gain heuristic.

By viewing ID3 in terms of its search space and search strategy, there are some insight into its

capabilities and limitations

1. ID3's hypothesis space of all decision trees is a complete space of finite discrete-valued

functions, relative to the available attributes. Because every finite discrete-valued

function can be represented by some decision tree

ID3 avoids one of the major risks of methods that search incomplete hypothesis spaces:

that the hypothesis space might not contain the target function.

Machine Learning 15CS73

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2. ID3 maintains only a single current hypothesis as it searches through the space of

decision trees.

For example, with the earlier version space candidate elimination method, which

maintains the set of all hypotheses consistent with the available training examples.

By determining only a single hypothesis, ID3 loses the capabilities that follow from

explicitly representing all consistent hypotheses.

For example, it does not have the ability to determine how many alternative decision

trees are consistent with the available training data, or to pose new instance queries that

optimally resolve among these competing hypotheses

3. ID3 in its pure form performs no backtracking in its search. Once it selects an attribute

to test at a particular level in the tree, it never backtracks to reconsider this choice.

In the case of ID3, a locally optimal solution corresponds to the decision tree it selects

along the single search path it explores. However, this locally optimal solution may be

less desirable than trees that would have been encountered along a different branch of

the search.

4. ID3 uses all training examples at each step in the search to make statistically based

decisions regarding how to refine its current hypothesis.

One advantage of using statistical properties of all the examples is that the resulting

search is much less sensitive to errors in individual training examples.

ID3 can be easily extended to handle noisy training data by modifying its termination

criterion to accept hypotheses that imperfectly fit the training data.

INDUCTIVE BIAS IN DECISION TREE LEARNING

Inductive bias is the set of assumptions that, together with the training data, deductively justify

the classifications assigned by the learner to future instances

Given a collection of training examples, there are typically many decision trees consistent with

these examples. Which of these decision trees does ID3 choose?

ID3 search strategy

 Selects in favour of shorter trees over longer ones

 Selects trees that place the attributes with highest information gain closest to the root.

Machine Learning 15CS73

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees

 Consider an algorithm that begins with the empty tree and searches breadth first through

progressively more complex trees.

 First considering all trees of depth 1, then all trees of depth 2, etc.

 Once it finds a decision tree consistent with the training data, it returns the smallest

consistent tree at that search depth (e.g., the tree with the fewest nodes).

 Let us call this breadth-first search algorithm BFS-ID3.

 BFS-ID3 finds a shortest decision tree and thus exhibits the bias "shorter trees are

preferred over longer trees.

A closer approximation to the inductive bias of ID3: Shorter trees are preferred over longer

trees. Trees that place high information gain attributes close to the root are preferred over

those that do not.

 ID3 can be viewed as an efficient approximation to BFS-ID3, using a greedy heuristic

search to attempt to find the shortest tree without conducting the entire breadth-first

search through the hypothesis space.

 Because ID3 uses the information gain heuristic and a hill climbing strategy, it exhibits

a more complex bias than BFS-ID3.

 In particular, it does not always find the shortest consistent tree, and it is biased to favour

trees that place attributes with high information gain closest to the root.

Restriction Biases and Preference Biases

Difference between the types of inductive bias exhibited by ID3 and by the CANDIDATE-

ELIMINATION Algorithm.

ID3:

 ID3 searches a complete hypothesis space

 It searches incompletely through this space, from simple to complex hypotheses, until

its termination condition is met

 Its inductive bias is solely a consequence of the ordering of hypotheses by its search

strategy. Its hypothesis space introduces no additional bias

CANDIDATE-ELIMINATION Algorithm:

 The version space CANDIDATE-ELIMINATION Algorithm searches an incomplete

hypothesis space

 It searches this space completely, finding every hypothesis consistent with the training

data.

 Its inductive bias is solely a consequence of the expressive power of its hypothesis

representation. Its search strategy introduces no additional bias

Machine Learning 15CS73

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Preference bias – The inductive bias of ID3 is a preference for certain hypotheses over others

(e.g., preference for shorter hypotheses over larger hypotheses), with no hard restriction on the

hypotheses that can be eventually enumerated. This form of bias is called a preference bias or

a search bias.

Restriction bias – The bias of the CANDIDATE ELIMINATION algorithm is in the form of a

categorical restriction on the set of hypotheses considered. This form of bias is typically called

a restriction bias or a language bias.

Which type of inductive bias is preferred in order to generalize beyond the training data, a

preference bias or restriction bias?

 A preference bias is more desirable than a restriction bias, because it allows the learner

to work within a complete hypothesis space that is assured to contain the unknown target

function.

 In contrast, a restriction bias that strictly limits the set of potential hypotheses is

generally less desirable, because it introduces the possibility of excluding the unknown

target function altogether.

Why Prefer Short Hypotheses?

Occam's razor

 Occam's razor: is the problem-solving principle that the simplest solution tends to be

the right one. When presented with competing hypotheses to solve a problem, one

should select the solution with the fewest assumptions.

 Occam's razor: “Prefer the simplest hypothesis that fits the data”.

Argument in favour of Occam’s razor:

 Fewer short hypotheses than long ones:

 Short hypotheses fits the training data which are less likely to be coincident

 Longer hypotheses fits the training data might be coincident.

 Many complex hypotheses that fit the current training data but fail to generalize

correctly to subsequent data.

Machine Learning 15CS73

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Argument opposed:

 There are few small trees, and our priori chance of finding one consistent with an

arbitrary set of data is therefore small. The difficulty here is that there are very many

small sets of hypotheses that one can define but understood by fewer learner.

 The size of a hypothesis is determined by the representation used internally by the

learner. Occam's razor will produce two different hypotheses from the same training

examples when it is applied by two learners, both justifying their contradictory

conclusions by Occam's razor. On this basis we might be tempted to reject Occam's

razor altogether.

ISSUES IN DECISION TREE LEARNING

Issues in learning decision trees include

1. Avoiding Overfitting the Data

Reduced error pruning

Rule post-pruning

2. Incorporating Continuous-Valued Attributes

3. Alternative Measures for Selecting Attributes

4. Handling Training Examples with Missing Attribute Values

5. Handling Attributes with Differing Costs

1. Avoiding Overfitting the Data

 The ID3 algorithm grows each branch of the tree just deeply enough to perfectly classify

the training examples but it can lead to difficulties when there is noise in the data, or

when the number of training examples is too small to produce a representative sample

of the true target function. This algorithm can produce trees that overfit the training

examples.

 Definition - Overfit: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit

the training data if there exists some alternative hypothesis h' ∈ H, such that h has

smaller error than h' over the training examples, but h' has a smaller error than h over

the entire distribution of instances.

Machine Learning 15CS73

14 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The below figure illustrates the impact of overfitting in a typical application of decision tree

learning.

 The horizontal axis of this plot indicates the total number of nodes in the decision tree,

as the tree is being constructed. The vertical axis indicates the accuracy of predictions

made by the tree.

 The solid line shows the accuracy of the decision tree over the training examples. The

broken line shows accuracy measured over an independent set of test example

 The accuracy of the tree over the training examples increases monotonically as the tree

is grown. The accuracy measured over the independent test examples first increases,

then decreases.

How can it be possible for tree h to fit the training examples better than h', but for it to perform

more poorly over subsequent examples?

1. Overfitting can occur when the training examples contain random errors or noise

2. When small numbers of examples are associated with leaf nodes.

Noisy Training Example

 Example 15: <Sunny, Hot, Normal, Strong, ->

 Example is noisy because the correct label is +

 Previously constructed tree misclassifies it

Machine Learning 15CS73

15 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Approaches to avoiding overfitting in decision tree learning

 Pre-pruning (avoidance): Stop growing the tree earlier, before it reaches the point where

it perfectly classifies the training data

 Post-pruning (recovery): Allow the tree to overfit the data, and then post-prune the tree

Criterion used to determine the correct final tree size

 Use a separate set of examples, distinct from the training examples, to evaluate the utility

of post-pruning nodes from the tree

 Use all the available data for training, but apply a statistical test to estimate whether

expanding (or pruning) a particular node is likely to produce an improvement beyond

the training set

 Use measure of the complexity for encoding the training examples and the decision tree,

halting growth of the tree when this encoding size is minimized. This approach is called

the Minimum Description Length

MDL – Minimize : size(tree) + size (misclassifications(tree))

Machine Learning 15CS73

16 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Reduced-Error Pruning

 Reduced-error pruning, is to consider each of the decision nodes in the tree to be

candidates for pruning

 Pruning a decision node consists of removing the subtree rooted at that node, making

it a leaf node, and assigning it the most common classification of the training examples

affiliated with that node

 Nodes are removed only if the resulting pruned tree performs no worse than-the original

over the validation set.

 Reduced error pruning has the effect that any leaf node added due to coincidental

regularities in the training set is likely to be pruned because these same coincidences are

unlikely to occur in the validation set

The impact of reduced-error pruning on the accuracy of the decision tree is illustrated in below

figure

 The additional line in figure shows accuracy over the test examples as the tree is pruned.

When pruning begins, the tree is at its maximum size and lowest accuracy over the test

set. As pruning proceeds, the number of nodes is reduced and accuracy over the test set

increases.

 The available data has been split into three subsets: the training examples, the validation

examples used for pruning the tree, and a set of test examples used to provide an

unbiased estimate of accuracy over future unseen examples. The plot shows accuracy

over the training and test sets.

Machine Learning 15CS73

17 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Pros and Cons

Pro: Produces smallest version of most accurate T

(subtree of T)

Con: Uses less data to construct T

Can afford to hold out D
validation

?. If not (data is too limited), may make error worse

(insufficient D
train

)

Rule Post-Pruning

Rule post-pruning is successful method for finding high accuracy hypotheses

 Rule post-pruning involves the following steps:

 Infer the decision tree from the training set, growing the tree until the training data is fit

as well as possible and allowing overfitting to occur.

 Convert the learned tree into an equivalent set of rules by creating one rule for each path

from the root node to a leaf node.

 Prune (generalize) each rule by removing any preconditions that result in improving its

estimated accuracy.

 Sort the pruned rules by their estimated accuracy, and consider them in this sequence

when classifying subsequent instances.

Converting a Decision Tree into Rules

Machine Learning 15CS73

18 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

For example, consider the decision tree. The leftmost path of the tree in below figure is

translated into the rule.

 IF (Outlook = Sunny) ^ (Humidity = High)

 THEN PlayTennis = No

Given the above rule, rule post-pruning would consider removing the preconditions

 (Outlook = Sunny) and (Humidity = High)

 It would select whichever of these pruning steps produced the greatest improvement in

estimated rule accuracy, then consider pruning the second precondition as a further

pruning step.

 No pruning step is performed if it reduces the estimated rule accuracy.

There are three main advantages by converting the decision tree to rules before pruning

1. Converting to rules allows distinguishing among the different contexts in which a

decision node is used. Because each distinct path through the decision tree node

produces a distinct rule, the pruning decision regarding that attribute test can be made

differently for each path.

2. Converting to rules removes the distinction between attribute tests that occur near the

root of the tree and those that occur near the leaves. Thus, it avoid messy bookkeeping

issues such as how to reorganize the tree if the root node is pruned while retaining part

of the subtree below this test.

3. Converting to rules improves readability. Rules are often easier for to understand.

2. Incorporating Continuous-Valued Attributes

Continuous-valued decision attributes can be incorporated into the learned tree.

There are two methods for Handling Continuous Attributes

1. Define new discrete valued attributes that partition the continuous attribute value into a

discrete set of intervals.

E.g., {high ≡ Temp > 35º C, med ≡ 10º C < Temp ≤ 35º C, low ≡ Temp ≤ 10º C}

2. Using thresholds for splitting nodes

e.g., A ≤ a produces subsets A ≤ a and A > a

Machine Learning 15CS73

19 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

What threshold-based Boolean attribute should be defined based on Temperature?

 Pick a threshold, c, that produces the greatest information gain

 In the current example, there are two candidate thresholds, corresponding to the values

of Temperature at which the value of PlayTennis changes: (48 + 60)/2, and (80 + 90)/2.

 The information gain can then be computed for each of the candidate attributes,

Temperature >54, and Temperature >85 and the best can be selected (Temperature >54)

3. Alternative Measures for Selecting Attributes

 The problem is if attributes with many values, Gain will select it ?

 Example: consider the attribute Date, which has a very large number of possible values.

(e.g., March 4, 1979).

 If this attribute is added to the PlayTennis data, it would have the highest information

gain of any of the attributes. This is because Date alone perfectly predicts the target

attribute over the training data. Thus, it would be selected as the decision attribute for

the root node of the tree and lead to a tree of depth one, which perfectly classifies the

training data.

 This decision tree with root node Date is not a useful predictor because it perfectly

separates the training data, but poorly predict on subsequent examples.

One Approach: Use GainRatio instead of Gain

The gain ratio measure penalizes attributes by incorporating a split information, that is sensitive

to how broadly and uniformly the attribute splits the data

Where, Si is subset of S, for which attribute A has value vi

Machine Learning 15CS73

20 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

4. Handling Training Examples with Missing Attribute Values

The data which is available may contain missing values for some attributes

Example: Medical diagnosis

 <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

 Sometimes values truly unknown, sometimes low priority (or cost too high)

Strategies for dealing with the missing attribute value

 If node n test A, assign most common value of A among other training examples sorted

to node n

 Assign most common value of A among other training examples with same target value

 Assign a probability pi to each of the possible values vi of A rather than simply assigning

the most common value to A(x)

5. Handling Attributes with Differing Costs

 In some learning tasks the instance attributes may have associated costs.

 For example: In learning to classify medical diseases, the patients described in terms of

attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults, etc.

 These attributes vary significantly in their costs, both in terms of monetary cost and cost

to patient comfort

 Decision trees use low-cost attributes where possible, depends only on high-cost

attributes only when needed to produce reliable classifications

How to Learn A Consistent Tree with Low Expected Cost?

One approach is replace Gain by Cost-Normalized-Gain

Examples of normalization functions

