
Software Engineering 17CS45

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 2

CHAPTER 2: DESIGN AND IMPLEMENTAION

2.1 Introduction to Rational Unified Process (RUP)

The Rational Unified Process (RUP) is an example of a modern process model that has been

derived from work on the UML and the associated Unified Software Development Process.

The RUP is described from three perspectives:

1. A dynamic perspective, which shows the phases of the model over time.

2. A static perspective, which shows the process activities that are enacted.

3. A practice perspective, which suggests good practices to be used during the process.

Phases in the Rational Unified Process (A dynamic perspective)

The RUP is a phased model that identifies four discrete phases in the software process. The

phases in the RUP are more closely related to business rather than technical concerns.

Figure: Phases in the Rational Unified Process

1. Inception: The goal of the inception phase is to establish a business case for the system.

Here identify all external entities (people and systems) that will interact with the system

and define these interactions. Then use this information to assess the contribution that

the system makes to the business.

2. Elaboration: The goals of the elaboration phase are to develop an understanding of the

problem domain, establish an architectural framework for the system, develop the

project plan, and identify key project risks. On completion of this phase you should have

a requirements model for the system, which may be a set of UML use-cases, an

architectural description, and a development plan for the software.

Software Engineering 17CS45

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

3. Construction: The construction phase involves system design, programming, and

testing. Parts of the system are developed in parallel and integrated during this phase.

On completion of this phase, you should have a working software system and associated

documentation that is ready for delivery to users.

4. Transition: The final phase of the RUP is concerned with moving the system from the

development community to the user community and making it work in a real

environment. On completion of this phase, you should have a documented software

system that is working correctly in its operational environment

Iteration within the RUP is supported in two ways.

1. Each phase may be enacted in an iterative way with the results developed incrementally.

2. The whole set of phases may also be enacted incrementally

Process activities in the Rational Unified Process (A static perspective)

 The static view of the RUP focuses on the activities that take place during the

development process. These are called workflows in the RUP description.

 There are six core process workflows identified in the process and three core supporting

workflows.

Figure: Static workflows in the Rational Unified Process

Software Engineering 17CS45

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The RUP has been designed in conjunction with the UML, so the workflow description

is oriented around associated UML models such as sequence models, object models,

A practice perspective

The practice perspective on the RUP describes good software engineering practices that are

recommended for use in systems development.

Six fundamental best practices are recommended:

1. Develop software: Iteratively plan increments of the system based on customer

priorities and develop the highest-priority system features early in the development

process

2. Manage requirements: Explicitly document the customer’s requirements and keep

track of changes to these requirements. Analyze the impact of changes on the system

before accepting them.

3. Use component-based architectures: Structure the system architecture into

components

4. Visually model software: Use graphical UML models to present static and dynamic

views of the software

5. Verify software quality: Ensure that the software meets the organizational quality

standards

6. Control changes to software: Manage changes to the software using a change

management system and configuration management procedures and tools.

Software Engineering 17CS45

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Design Principles

Software design and implementation is the stage in the software engineering process at which

an executable software system is developed.

 Software design and implementation activities are invariably interleaved.

 Software design is a creative activity in which software components and their

relationships are identified, based on a customer’s requirements.

 Implementation is the process of realizing the design as a program.

2.2 Object-oriented design using the UML

 An object-oriented system is made up of interacting objects that maintain their own local

state and provide operations on that state.

 Object-oriented design processes involve designing object classes and the relationships

between these classes.

 Object-oriented systems are easier to change than systems developed using functional

approaches.

 To develop a system design from concept to detailed, object-oriented design, there are

several activities need to do:

1. Understand and define the context and the external interactions with the system.

2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.

5. Specify interfaces.

2.2.1 System context and interactions

 The first stage in any software design process is to develop an understanding of the

relationships between the software that is being designed and its external environment.

 System context models and interaction models present complementary views of the

relationships between a system and its environment:

1. A system context model is a structural model that demonstrates the other systems

in the environment of the system being developed.

2. An interaction model is a dynamic model that shows how the system interacts

with its environment as it is used.

 The context model of a system may be represented using associations. Associations

simply show that there are some relationships between the entities involved in the

association.

 Fig 2.1 shows that the systems in the environment of each weather station are a weather

information system, an onboard satellite system, and a control system. The cardinality

Software Engineering 17CS45

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

information on the link shows that there is one control system but several weather

stations, one satellite, and one general weather information system.

Figure 2.1: System context for the weather station

 The use case model for the weather station is shown in Figure 2.2. This shows that the

weather station interacts with the weather information system to report weather data and

the status of the weather station hardware. Other interactions are with a control system

that can issue specific weather station control commands.

Figure 2.2: Weather Control station use cases

 Each of these use cases should be described in structured natural language. This helps

designers to identify objects in the system and gives them an understanding of what the

Software Engineering 17CS45

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

system is intended to do. Figure 2.3, which describes the Report weather use case from

Figure 2.2.

Figure 2.3: Use case description – Report weather

2.2.2 Architectural design

 The interactions between the software system and the system’s environment is the basis

for designing the system architecture.

 Identify the major components that make up the system and their interactions, and then

may organize the components using an architectural pattern such as a layered or client–

server model.

 The high-level architectural design for the weather station software is shown in Figure

2.4.

Figure 2.4: High-level architecture of the weather station

Software Engineering 17CS45

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The weather station is composed of independent subsystems that communicate by

broadcasting messages on a common infrastructure, shown as the Communication link

in Figure 2.4. Each subsystem listens for messages on that infrastructure and picks up

the messages that are intended for them.

 For example, when the communications subsystem receives a control command, such

as shutdown, the command is picked up by each of the other subsystems, which then

shut themselves down in the correct way.

 The key benefit of this architecture is that it is easy to support different configurations

of subsystems because the sender of a message does not need to address the message to

a particular subsystem.

Figure 2.5 shows the architecture of the data collection subsystem, which is included in Figure

2.4.

Figure 2.5: Architecture WeatherData of data collection system

 The Transmitter and Receiver objects are concerned with managing communications

and the WeatherData object encapsulates the information that is collected from the

instruments and transmitted to the weather information system. This arrangement

follows the producer-consumer pattern

2.2.3 Object class identification

Object identification is an iterative process. Various proposals are made to identify object

classes in object-oriented systems

1. Use a grammatical analysis approach based on a natural language description of the

system. Example: Objects and attributes are nouns; operations or services are verbs

2. Use tangible entities (things) in the application domain such as aircraft, roles such as

manager or doctor, events such as requests, interactions such as meetings, locations such

as offices, organizational units.

3. Use a scenario-based analysis where various scenarios of system use are identified and

analysed and identify the required objects, attributes, and operations

Software Engineering 17CS45

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 In the wilderness weather station, object identification is based on the tangible hardware

in the system.

Figure 2.6: Weather station objects

 In figure 2.6 there are five object classes. The Ground thermometer, Anemometer, and

Barometer objects are application domain objects, and the WeatherStation and

WeatherData objects have been identified from the system description and the scenario

(use case) description.

2.2.4 Design models

Design or system models show the objects or object classes in a system. They also show the

associations and relationships between these entities. These models are the bridge between the

system requirements and the implementation of a system

When the UML is used to develop a design, two kinds of design models are normally

developed:

1. Structural models, which describe the static structure of the system using object classes

and their relationships.

2. Dynamic models, which describe the dynamic structure of the system and show the

interactions between the system objects.

Software Engineering 17CS45

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The three models that are particularly useful for adding detail to use case and architectural

models:

1. Subsystem models show logical groupings of objects into coherent subsystems. These

are represented using a form of class diagram with each subsystem shown as a package

with enclosed objects. Subsystem models are static (structural) models.

2. Sequence models show the sequence of object interactions. These are represented using

a UML sequence or a collaboration diagram. Sequence models are dynamic models

3. State machine models show how individual objects change their state in response to

events. These are represented in the UML using state diagrams. State machine models

are dynamic models. State diagrams are useful high-level models of a system or an

object's run-time behavior

Figure 2.7: Sequence diagram describing data collection

Figure 2.7 is an example of a sequence model, shown as a UML sequence diagram. This

diagram shows the sequence of interactions that take place when an external system requests

the summarized data from the weather station.

Sequence diagrams are read from top to bottom:

1. The SatComms object receives a request from the weather information system to

collect a weather report from a weather station. It acknowledges receipt of this

request.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a

summary of the collected weather data.

3. WeatherStation sends a message to a Commslink object to summarize the weather

data.

Software Engineering 17CS45

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

4. Commslink calls the summarize method in the object WeatherData and waits for a

reply.

5. The weather data summary is computed and returned to WeatherStation via the

Commslink object.

6. WeatherStation then calls the SatComms object to transmit the summarized data to

the weather information system, through the satellite communications system.

Figure 7.8 is a state diagram for the weather station system that shows how it responds to

requests for various services.

1. If the system state is Shutdown then it can respond to a restart(), a reconfigure(), or

a powerSave() message.

2. In the Running state, the system expects further messages. If a shutdown() message

is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarizing

state.

4. If a reportStatus() message is received, the system moves to the Testing state, then

the Transmitting state, before returning to the Running state.

5. If a signal from the clock is received, the system moves to the Collecting state, where

it collects data from the instruments. Each instrument is instructed in turn to collect

its data from the associated sensors.

Figure 2.8: Weather station state diagram

Software Engineering 17CS45

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2.2.5 Interface specification

 Interface design is concerned with specifying the detail of the interface to an object or

to a group of objects

 Interfaces can be specified in the UML using the same notation as a class diagram. There

is no attribute section and the UML stereotype ‹‹interface›› should be included in the

name part.

 Figure 2.9 shows two interfaces that may be defined for the weather station. The

reporting interface defines the operation names that are used to generate weather and

status reports. These map directly to operations in the WeatherStation object. The

remote control interface provides four operations, which map onto a single method in

the WeatherStation object.

Figure 2.9: Weather station interfaces

2.3 Design Patterns

 A design pattern is a way of reusing abstract knowledge about a problem and its solution.

A pattern is a description of the problem and the essence of its solution. It should be

sufficiently abstract to be reused in different settings.

 Pattern descriptions usually make use of object-oriented characteristics such as

inheritance and polymorphism.

The four essential elements of design patterns

1. A name that is a meaningful reference to the pattern.

2. A description of the problem area that explains when the pattern may be applied.

3. A solution description of the parts of the design solution, their relationships, and their

responsibilities. This is not a concrete design description. It is a template for a design

solution that can be instantiated in different ways. This is often expressed graphically

and shows the relationships between the objects and object classes in the solution.

4. A statement of the consequences - the results and trade-offs—of applying the pattern.

This can help designers understand whether or not a pattern can be used in a particular

situation.

Software Engineering 17CS45

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Figure 2.10: The Observer pattern

Figure 2.10 to illustrate pattern description. There are four essential description elements and

also include a brief statement of what the pattern can do. This pattern can be used in situations

where different presentations of an object’s state are required.

Figure 2.11: Multiple displays

Figure 2.11, which shows two graphical presentations of the same data set.

Software Engineering 17CS45

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Graphical representations are normally used to illustrate the object classes in patterns and their

relationships. These supplement the pattern description and add detail to the solution

description. Figure 2.12 is the representation in UML of the Observer pattern

Figure 2.12: A UML model of the Observer pattern

2.4 Implementation issues

Implementation is a critical stage where an executable version of the software is developed.

Some of the aspects of implementation are:

1. Reuse: Most modern software is constructed by reusing existing components or

systems. When developing software, make use of existing code as much as possible.

2. Configuration management: During the development process, keep track of the many

different versions of each software component in a configuration management system.

3. Host-target development: Production software does not usually execute on the same

computer as the software development environment. Rather, develop it on one computer

(the host system) and execute it on a separate computer (the target system).

2.4.1 Reuse

The reuse of existing software has emerged and is now generally used for business systems,

scientific software, and, increasingly, in embedded systems engineering.

Software reuse is possible at a number of different levels:

1. The abstraction level: At this level, software is not reused directly but rather use

knowledge of successful abstractions in the design of your software.

Software Engineering 17CS45

14 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2. The object level: At this level, directly reuse objects from a library rather than writing

the code yourself. For example, to process mail messages in a Java program, use objects

and methods from a JavaMail library.

3. The component level: Components are collections of objects and object classes that

operate together to provide related functions and services. Adapt and extend the

component by adding some code of your own. An example of component-level reuse is

where building user interface using a framework.

4. The system level: At this level, reuse entire application systems.

By reusing existing software, develop new systems can be developed more quickly, with fewer

development risks and also lower costs. However, there are costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and assessing whether or not

it meets your needs.

2. Where applicable, the costs of buying the reusable software. For large off-the-shelf

systems, these costs can be very high.

3. The costs of adapting and configuring the reusable software components or systems to

reflect the requirements of the system that you are developing.

4. The costs of integrating reusable software elements with each other and with the new

code which is developed.

2.4.2 Configuration management

 Configuration management is the name given to the general process of managing a

changing software system.

 The aim of configuration management is to support the system integration process so

that all developers can access the project code and documents in a controlled way, find

out what changes have been made, and compile and link components to create a system.

There are three fundamental configuration management activities:

1. Version management: where support is provided to keep track of the different versions

of software components. Version management systems include facilities to coordinate

development by several programmers.

2. System integration: where support is provided to help developers define what versions

of components are used to create each version of a system. This description is then used

to build a system automatically by compiling and linking the required components.

3. Problem tracking: where support is provided to allow users to report bugs and other

problems, and to allow all developers to see who is working on these problems and when

they are fixed.

Software Engineering 17CS45

15 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2.4.3 Host-target development

 Most software is developed on one computer (the host, development platform), but runs

on a separate machine (the target, execution platform).

 A platform is more than just hardware; it includes the installed operating system plus

other supporting software such as a database management system or, for development

platforms, an interactive development environment (IDE). An IDE is a set of software

tools that supports different aspects of software development, within some common

framework and user interface.

 Development platform usually has different installed software than execution platform;

these platforms may have different architectures. Mobile app development (e.g. for

Android) is a good example.

Typical development platform tools include:

1. An integrated compiler and syntax-directed editing system that allows you to create, edit

and compile code.

2. A language debugging system.

3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit that can automatically run a set of tests on a new version of

a program.

5. Project support tools that help you organize the code for different development projects.

2.5 Open source development

 Open source development is an approach to software development in which the source

code of a software system is published and volunteers are invited to participate in the

development process.

 Its roots are in the Free Software Foundation, which advocates that source code should

not be proprietary but rather should always be available for users to examine and modify

as they wish.

 The best-known open source product is, of course, the Linux operating system which is

widely used as a server system and, increasingly, as a desktop environment. Other

important open source products are Java, the Apache web server and the mySQL

database management system.

 A fundamental principle of open-source development is that source code should be

freely available, this does not mean that anyone can do as they wish with that code.

Software Engineering 17CS45

16 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Typical licensing models include:

 The GNU General Public License (GPL). This is a so-called 'reciprocal' license that

means that if you use open source software that is licensed under the GPL license, then

you must make that software open source.

 The GNU Lesser General Public License (LGPL) is a variant of the GPL license

where you can write components that link to open source code without having to publish

the source of these components.

 The Berkley Standard Distribution (BSD) License This is a non-reciprocal license,

which means you are not obliged to re-publish any changes or modifications made to

open source code. You can include the code in proprietary systems that are sold.

