
Operating Systems 17CS64

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 17CS64

SEMESTER: 6

MODULE: 2

NUMBER OF HOURS: 10

CONTENTS:

 Multi-threaded Programming:

 Multithreading models

 Thread Libraries

 Threading issues.

 Process Scheduling:

 Basic concepts

 Scheduling Criteria;

 Scheduling Algorithms;

 Multiple-processor scheduling;

 Thread scheduling.

 Process Synchronization:

 Synchronization: The critical section problem;

 Peterson’s solution;

 Synchronization hardware;

 Semaphores;

 Classical problems of synchronization;

 Monitors.

 Question Bank:

WEB RESOURCES:

https://www.geeksforgeeks.org/operating-systems/

https://www.tutorialspoint.com/operating_system/index.htm

https://www.geeksforgeeks.org/operating-systems/
https://www.tutorialspoint.com/operating_system/index.htm

Operating Systems 17CS64

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 2

MULTITHREADED PROGRAMMING

 A thread is a basic unit of CPUutilization.

 It consistsof

 thread ID

 PC

 register-set and

 stack.

 It shares with other threads belonging to the same process its code-section &data-section.

 A traditional (or heavy weight) process has a single thread ofcontrol.

 If a process has multiple threads of control, it can perform more than one task at a time.

such a process is called multithreaded process

Fig: Single-threaded and multithreaded processes

Motivation for Multithreaded Programming

1. The software-packages that run on modern PCs aremultithreaded.An application is

implemented as a separate process with several threads of control. For ex: A word processor

mayhave

 first thread for displaying graphics

 second thread for responding to keystrokesand

 Thirdthread for performing grammarchecking.

Operating Systems 17CS64

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

2. In some situations, a single application may be required to perform several similartasks. For ex:

A web-server may create a separate thread for each client requests. This allows the server to

service several concurrent requests.

3. RPC servers aremultithreaded.

 When a server receives a message, it services the message using separate concurrent

threads.

4. Most OS kernels aremultithreaded;

 Several threads operate in kernel, and each thread performs a specific task,

suchasmanaging devices or interrupt handling.

Benefits of Multithreaded Programming

 Responsiveness A program may be allowed to continue running even if part of it is

blocked. Thus, increasing responsiveness to the user.

 Resource Sharing By default, threads share the memory (and resources) of the

process to which they belong. Thus, an application is allowed to have several

different threads of activity within the sameaddress-space.

 Economy Allocating memory and resources for process-creation is costly. Thus, it is

more economical to create and context-switchthreads.

 Utilization of Multiprocessor Architectures In a multiprocessor architecture,

threads may be running in parallel on different processors. Thus, parallelism will

beincreased.

MULTITHREADING MODELS

 Support for threads may be provided ateither

1. The user level, for user threads or

2. By the kernel, for kernel threads.

 User-threads are supported above the kernel and are managed withoutkernelsupport. Kernel-

threads are supported and managed directly by the OS.

 Three ways of establishing relationship between user-threads &kernel-threads:

1. Many-to-onemodel

2. One-to-one modeland

3. Many-to-manymodel.

Operating Systems 17CS64

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Many-to-One Model

 Many user-level threads are mapped to one kernel thread.

Advantages:

 Thread management is done by the thread library in user space, so it isefficient.

Disadvantages:

 The entire process will block if a thread makes a blockingsystem-call.

 Multiple threads are unable to run in parallel onmultiprocessors.

 Forexample:

 Solaris green threads

 GNU portable threads.

Fig: Many-to-one model

One-to-One Model

 Each user thread is mapped to a kernel thread.

Advantages:

 It provides more concurrency by allowing another thread to run when a thread

makes a blockingsystem-call.

 Multiple threads can run in parallel on multiprocessors.

Disadvantage:

 Creating a user thread requires creating the corresponding kernel thread.

 For example:

 Windows NT/XP/2000, Linux

Fig: one-to-one model

Operating Systems 17CS64

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Many-to-Many Model

 Many user-level threads are multiplexed to a smaller number of kernel threads.

Advantages:

 Developers can create as many user threads as necessary

 The kernel threads can run in parallel on amultiprocessor.

 When a thread performs a blocking system-call, kernel can schedule another thread

for execution.

Two Level Model

 A variation on the many-to-many model is the two level-model

 Similar to M:N, except that it allows a user thread to be bound to kernelthread.

 forexample:

 HP-UX

 Tru64 UNIX

Fig: Many-to-many model Fig: Two-level model

Thread Libraries

 It provides the programmer with an API for the creation and management ofthreads.

 Two ways of implementation:

1. First Approach:

Provides a library entirely in user space with no kernel support. All code and data structures

for the library exist in the user space.

2. SecondApproach

Provides a library entirely in user space with no kernel support. All code and data structures

for the library exist in the user space.

Operating Systems 17CS64

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Three main threadlibraries:

1. POSIXP threads

2. Win32 and

3. Java.

Pthreads

 This is a POSIX standard API for thread creation andsynchronization.

 This is a specification for thread-behavior, not an implementation.

 OS designers may implement the specification in any way theywish.

 Commonly used in: UNIX andSolaris.

Operating Systems 17CS64

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Win32 threads

 Implements the one-to-onemapping

 Each threadcontains

 A threadid

 Registerset

 Separate user and kernelstacks

 Private data storagearea

 The register set, stacks, and private storage area are known as the context of the

threads The primary data structures of a thread include:

 ETHREAD (executive threadblock)

 KTHREAD (kernel threadblock)

 TEB (thread environmentblock)

Java Threads

 Threads are the basic model of program-executionin

 Java program and

 Java language.

 The API provides a rich set of features for the creation and management of threads.

 All Java programs comprise at least a single thread ofcontrol.

 Two techniques for creating threads:

1. Create a new class that is derived from the Thread class and override its run() method.

2. Define a class that implements the Runnable interface. The Runnable interface is

defined as follows:

Operating Systems 17CS64

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

THREADING ISSUES

fork() and exec() System-calls

 fork() is used to create a separate, duplicateprocess.

 If one thread in a program calls fork(),then

1. Some systems duplicates all threads and

2. Other systems duplicate only the thread that invoked the forkO.

 If a thread invokes the exec(), the program specified in the parameter to exec() will

replace the entire process including allthreads.

Thread Cancellation

 This is the task of terminating a thread before it hascompleted.

 Target thread is the thread that is to be cancelled

 Thread cancellation occurs in two differentcases:

1. Asynchronous cancellation: One thread immediately terminates the targetthread.

2. Deferred cancellation: The target thread periodically checks whether it should be

terminated.

Signal Handling

 In UNIX, a signal is used to notify a process that a particular event hasoccurred.

 All signals follow thispattern:

1. A signal is generated by the occurrence of a certainevent.

2. A generated signal is delivered to aprocess.

3. Once delivered, the signal must behandled.

 A signal handler is used to processsignals.

 A signal may be received either synchronously or asynchronously, depending on thesource.

1. Synchronoussignals

 Delivered to the same process that performed the operation causing the signal.

 E.g. illegal memory access and division by 0.

2. Asynchronoussignals

 Generated by an event external to a running process.

 E.g. user terminating a process with specific keystrokes<ctrl><c>.

Operating Systems 17CS64

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Every signal can be handled by one of two possiblehandlers:

1. A Default SignalHandler

 Run by the kernel when handling the signal.

2. A User-defined SignalHandler

 Overrides the default signal handler.

 In single-threaded programs, delivering signals is simple (since signals are always

delivered to a process).

 In multithreaded programs, delivering signals is more complex. Then, the following

options exist:

1. Deliver the signal to the thread to which the signal applies.

2. Deliver the signal to every thread in process

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

THREAD POOLS

 The basic idea is to

 create a no. of threads at process-startup and

 place the threads into a pool (where they sit and wait for work).

 Procedure:

1. When a server receives a request, it awakens a thread from the pool.

2. If any thread is available, the request is passed to it for service.

3. Once the service is completed, the thread returns to the pool.

 Advantages:

 Servicing a request with an existing thread is usually faster than waiting to

create a thread.

 The pool limits the no. of threads that exist at any one point.

 No. of threads in the pool can be based on actors such as

 no. of CPUs

 amount of memory and

 expected no. of concurrent client-requests.

THREAD SPECIFIC DATA

 Threads belonging to a process share the data of the process.

 this sharing of data provides one of the benefits of multithreadedprogramming.

 In some circumstances, each thread might need its own copy of certain data. We will call such

data thread-specific data.

 For example, in a transaction-processing system, we might service each transaction in a

separatethread.

Operating Systems 17CS64

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Furthermore, each transaction may be assigned a unique identifier. To associate

each thread with its unique identifier, we could use thread-specificdata.

SCHEDULER ACTIVATIONS

 Both M:M and Two-level models require communication to maintain the

appropriate number of kernel threads allocated to theapplication.

 Scheduler activations provide upcallsa communication mechanism from the

kernel to the threadlibrary

 This communication allows an application to maintain the correct number kernel

threads

 One scheme for communication between the user-thread library and the kernel is

known as scheduler activation.

Operating Systems 17CS64

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

PROCESS SCHEDULING

Basic Concepts

 In a single-processor system,

 Only one process may run at a time.

 Other processes must wait until the CPU is rescheduled.

 Objective ofmultiprogramming:

 To have some process running at all times, in order to maximize CPU

utilization.

CPU-I/0 Burst Cycle

 Process execution consists of a cycleof

 CPU execution and

 I/O wait

 Process execution begins with a CPU burst, followed by an I/O burst, then

another CPU burst, etc…

 Finally, a CPU burst ends with a request to terminateexecution.

 An I/O-bound program typically has many short CPUbursts.

 A CPU-bound program might have a few long CPU bursts.

Fig Alternating sequence of CPU and I/O bursts

Operating Systems 17CS64

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Fig: Histogram of CPU-burst durations

CPU Scheduler

 Thisscheduler

 selects a waiting-process from the ready-queue and

 allocates CPU to the waiting-process.

 The ready-queue could be a FIFO, priority queue, tree andlist.

 The records in the queues are generally process control blocks (PCBs) of theprocesses.

CPU Scheduling

 Four situations under which CPU scheduling decisions takeplace:

1. When a process switches from the running state to the waiting state. For ex; I/O

request.

2. When a process switches from the running state to the ready state. For ex:

when an interrupt occurs.

3. When a process switches from the waiting state to the ready state. For ex:

completion of I/O.

4. When a process terminates.

 Scheduling under 1 and 4 is non- preemptive. Scheduling under 2 and 3 is preemptive.

Non Preemptive Scheduling

 Once the CPU has been allocated to a process, the process keeps the CPU until it

releases the CPU either

 by terminating or

 by switching to the waiting state.

Preemptive Scheduling

 This is driven by the idea of prioritizedcomputation.

 Processes that are runnable may be temporarilysuspended

 Disadvantages:

1. Incurs a cost associated with access toshared-data.

2. Affects the design of the OSkernel.

Operating Systems 17CS64

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Dispatcher

 It gives control of the CPU to the process selected by the short-termscheduler.

 The functioninvolves:

1. Switchingcontext

2. Switching to user mode&

3. Jumping to the proper location in the user program to restart that program

 It should be as fast as possible, since it is invoked during every process switch.

 Dispatch latency means the time taken by the dispatcherto

 stop one process and

 start another running.

SCHEDULING CRITERIA:

In choosing which algorithm to use in a particular situation, depends upon the properties

of the various algorithms.Many criteria have been suggested for comparing CPU-

scheduling algorithms. The criteria include the following:

1. CPU utilization: We want to keep the CPU as busy as possible. Conceptually,

CPU utilization can range from 0 to 100 percent. In a real system, it should range

from 40 percent (for a lightly loaded system) to 90 percent (for a heavily used

system).

2. Throughput: If the CPU is busy executing processes, then work is being done.

One measure of work is the number of processes that are completed per time unit,

called throughput. For long processes, this rate may be one process per hour; for

short transactions, it may be ten processes per second.

3. Turnaround time. This is the important criterion which tells how long it takes to

execute that process. The interval from the time of submission of a process to the

time of completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue, executing on

the CPU, and doing I/0.

4. Waiting time: The CPU-scheduling algorithm does not affect the amount of time

during which a process executes or does I/0, it affects only the amount of time that

a process spends waiting in the ready queue.Waiting time is the sum of the periods

spent waiting in the ready queue.

5. Response time:In an interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output fairly early and can continue

computing new results while previous results are being output to the user. Thus,

another measure is the time from the submission of a request until the first response

is produced. This measure, called response time, is the time it takes to start

responding, not the time it takes to output the response. The turnaround time is

generally limited by the speed of the output device.

Operating Systems 17CS64

14 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

SCHEDULING ALGORITHMS

 CPU scheduling deals with the problem of deciding which of the processes in

the ready-queue is to be allocated theCPU.

 Following are some schedulingalgorithms:

1. FCFS scheduling (First Come FirstServed)

2. Round Robin scheduling

3. SJF scheduling (Shortest JobFirst)

4. SRT scheduling

5. Priority scheduling

6. Multilevel Queue schedulingand

7. Multilevel Feedback Queuescheduling

FCFS Scheduling

 The process that requests the CPU first is allocated the CPUfirst.

 The implementation is easily done using a FIFOqueue.

 Procedure:

1. When a process enters the ready-queue, its PCB is linked onto the tail of

thequeue.

2. When the CPU is free, the CPU is allocated to the process at the queue’shead.

3. The running process is then removed from the queue.

 Advantage:

1. Code is simple to write & understand.

 Disadvantages:

1. Convoy effect: All other processes wait for one big process to get off theCPU.

2. Non-preemptive (a process keeps the CPU until it releasesit).

3. Not good for time-sharingsystems.

4. The average waiting time is generally notminimal.

 Example: Suppose that the processes arrive in the order P1, P2,P3.

 The Gantt Chart for the schedule is asfollows:

 Waiting time for P1 = 0; P2 = 24; P3 =27

Average waiting time: (0 + 24 + 27)/3 = 17ms

 Suppose that the processes arrive in the order P2, P3,P1.

Operating Systems 17CS64

15 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The Gantt chart for the schedule is asfollows:

 Waiting time for P1 = 6;P2 = 0; P3 =3

 Average waiting time: (6 + 0 + 3)/3 = 3ms

SJF Scheduling

 The CPU is assigned to the process that has the smallest next CPUburst.

 If two processes have the same length CPU burst, FCFS scheduling is used to break

thetie.

 For long-term scheduling in a batch system, we can use the process time limit

specified by the user, as the‘length’
 SJF can't be implemented at the level of short-term scheduling, because there is

no way to know the length of the next CPUburst

 Advantage:

1. The SJF is optimal, i.e. it gives the minimum average waiting time for a

given set of processes.

 Disadvantage:

1. Determining the length of the next CPU burst.

 SJF algorithm may be either 1) non-preemptive or 2)preemptive.

1. Non preemptiveSJF

The current process is allowed to finish its CPU burst.

2. PreemptiveSJF

If the new process has a shorter next CPU burst than what is left of the

executing process, that process is preempted. It is also known as SRTF

scheduling (Shortest-Remaining-Time-First).

 Example (for non-preemptive SJF): Consider the following set of processes,

with the length of the CPU-burst time given inmilliseconds.

 For non-preemptive SJF, the Gantt Chart is asfollows:

Operating Systems 17CS64

16 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Waiting time for P1 = 3; P2 = 16; P3 = 9; 4=0 Average waiting time: (3 + 16 + 9 +

0)/4= 7

preemptive SJF/SRTF: Consider the following set of processes, with the length

of the CPU- burst time given inmilliseconds.

 For preemptive SJF, the Gantt Chart is asfollows:

 The average waiting time is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 =6.5.

Priority Scheduling

 A priority is associated with eachprocess.

 The CPU is allocated to the process with the highestpriority.

 Equal-priority processes are scheduled in FCFSorder.

 Priorities can be defined either internally orexternally.

1. Internally-defined priorities.

 Use some measurable quantity to compute the priority of a process.

 For example: time limits, memory requirements, no. f open files.

2. Externally-defined priorities.

 Set by criteria that are external to the OS For

example:

 importance of the process, political factors

 Priority scheduling can be either preemptive or non-preemptive.

1.Preemptive

The CPU is preempted if the priority of the newly arrived process is

higher than the priority of the currently running process.

2. Non Preemptive

The new process is put at the head of the ready-queue

 Advantage:

 Higher priority processes can be executed first.

 Disadvantage:

 Indefinite blocking, where low-priority processes are left waiting

indefinitely for CPU. Solution: Aging is a technique of increasing

priority of processes that wait in system for a long time.

Operating Systems 17CS64

17 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Example: Consider the following set of processes, assumed to have arrived at

time 0, in the order PI, P2, ..., P5, with the length of the CPU-burst time given

inmilliseconds.

 The Gantt chart for the schedule is asfollows:

 The average waiting time is 8.2milliseconds.

Round Robin Scheduling

 Designed especially for timesharingsystems.

 It is similar to FCFS scheduling, but with preemption.

 A small unit of time is called a time quantum(or timeslice).

 Time quantum is ranges from 10 to 100ms.

 The ready-queue is treated as a circularqueue.

 The CPUscheduler

 goes around the ready-queue and

 allocates the CPU to each process for a time interval of up to 1 time

quantum.

 To implement:

The ready-queue is kept as a FIFO queue of processes

 CPUscheduler

1. Picks the first process from theready-queue.

2. Sets a timer to interrupt after 1 time quantumand

3. Dispatches theprocess.

 One of two things will thenhappen.

1. The process may have a CPU burst of less than 1 time quantum. In this case,

the process itself will release the CPU voluntarily.

2. If the CPU burst of the currently running process is longer than 1 time

quantum, the timer will go off and will cause an interrupt to the OS. The

process will be put at the tail of the ready-queue.

 Advantage:

 Higher average turnaround than SJF.

 Disadvantage:

 Better response time than SJF.

 Example: Consider the following set of processes that arrive at time 0, with the

length of the CPU-burst time given inmilliseconds.

Operating Systems 17CS64

18 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The Gantt chart for the schedule is asfollows:

 The average waiting time is 17/3 = 5.66milliseconds.

 The RR scheduling algorithm is preemptive.

No process is allocated the CPU for more than 1 time quantum in a row.

If a process' CPU burst exceeds 1 time quantum, that process is

preempted and is put back in the ready- queue.

 The performance of algorithm depends heavily on the size of the time quantum.

1. If time quantum=very large, RR policy is the same as the FCFSpolicy.

2. If time quantum=very small, RR approach appears to the users as though each

of n processes has its own processor running at l/n the speed of the real

processor.

 In software, we need to consider the effect of context switching on the

performance of RR scheduling

1. Larger the time quantum for a specific process time, less time is spend on

context switching.

2. The smaller the time quantum, more overhead is added for the purpose of

context- switching.

Fig: How a smaller time quantum increases context switches

Operating Systems 17CS64

19 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Fig: How turnaround time varies with the time quantum

Multilevel Queue Scheduling

 Useful for situations in which processes are easily classified into different groups.

 For example, a common division is made between

 foreground (or interactive) processes and

 background (or batch) processes.

 The ready-queue is partitioned into several separate queues (Figure2.19).

 The processes are permanently assigned to one queue based on some property like

 memory size

 process priority or

 process type.

 Each queue has its own scheduling algorithm.

For example, separate queues might be used for foreground and background

processes.

Fig Multilevel queue scheduling

Operating Systems 17CS64

20 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 There must be scheduling among the queues, which is commonly implemented

as fixed-priority preemptive scheduling.

 For example, the foreground queue may have absolute priority over the

background queue.

 Time slice: each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR 20% to background

in FCFS

Multilevel Feedback Queue Scheduling

 A process may move between queues

 The basic idea: Separate processes according to the features of their CPU bursts.

Forexample

1. If a process uses too much CPU time, it will be moved to a lower-priority queue.

This scheme leaves I/O-bound and interactive processes in the higher-priority

queues.

2. If a process waits too long in a lower-priority queue, it may be moved to a

higher-priority queue This form of aging prevents starvation.

.

Figure 2.20 Multilevel feedback queues

In general, a multilevel feedback queue scheduler is defined by the followingparameters:

1. The number ofqueues.

2. The scheduling algorithm for eachqueue.

3. The method used to determine when to upgrade a process to a higher priorityqueue.

4. The method used to determine when to demote a process to a lower priorityqueue.

5. The method used to determine which queue a process will enter when that

process needs service

Operating Systems 17CS64

21 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MULTIPLE PROCESSOR SCHEDULING

 If multiple CPUs are available, the scheduling problem becomes morecomplex.

 Twoapproaches:

AsymmetricMultiprocessing

The basic idea is:

 A master server is a single processor responsible for all scheduling decisions, I/O

processing and other systemactivities.

 The other processors execute only user code.

 Advantage: This is simple because only one processor accesses the system data

structures, reducing the need for data sharing.

Symmetric Multiprocessing

The basic idea is:

 Each processor is self-scheduling.

 To do scheduling, the scheduler for eachprocessor

 Examines the ready-queue and

 Selects a process to execute.

Restriction: We must ensure that two processors do not choose the same process and that
processes are not lost from the queue.

Processor Affinity

 In SMP systems,

1. Migration of processes from one processor to another are avoided and

2. Instead processes are kept running on same processor. This is known as

processor affinity.

 Two forms:

1. SoftAffinity

 When an OS try to keep a process on one processor because of

policy, but cannot guarantee it will happen.

 It is possible for a process to migrate between processors.

2. Hard Affinity

 When an OS have the ability to allow a process to specify that it is not to

migrate to other processors. Eg: Solaris OS

Load Balancing

 This attempts to keep the workload evenly distributed across all processors in an

SMPsystem.

 Twoapproaches:

1. PushMigration

A specific task periodically checks the load on each processor and if it finds an

imbalance, it evenly distributes the load to idle processors.

2. PullMigration

An idle processor pulls a waiting task from a busy processor.

Operating Systems 17CS64

22 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Symmetric Multithreading
 The basic idea:

1. Create multiple logical processors on the same physical processor.
2. Present a view of several logical processors to the OS.

 Each logical processor has its own architecture state, which includes general-
purpose and machine-state registers.
 Each logical processor is responsible for its own interrupt handling.

 SMT is a feature provided in hardware, notsoftware.

THREAD SCHEDULING

 On OSs, it is kernel-level threads but not processes that are being scheduled by theOS.

 User-level threads are managed by a thread library, and the kernel is unaware ofthem.

 To run on a CPU, user-level threads must be mapped to an associated kernel-

levelthread.

Contention Scope

 Twoapproaches:

1. Process-Contention scope

 On systems implementing the many-to-one and many-to-many models, the

thread library schedules user-level threads to run on an available LWP.

 Competition for the CPU takes place among threads belonging to the

sameprocess.

2. System-Contentionscope

 The process of deciding which kernel thread to schedule on theCPU.

 Competition for the CPU takes place among all threads in thesystem.

 Systems using the one-to-one model schedule threads using onlySCS.

Pthread Scheduling

 Pthread API that allows specifying either PCS or SCS during threadcreation.

 Pthreads identifies the following contention scopevalues:

1. PTHREAD_SCOPEJPROCESS schedules threads using PCSscheduling.

2. PTHREAD-SCOPE_SYSTEM schedules threads using SCSscheduling.

 Pthread IPC provides following two functions for getting and setting the contention

scopepolicy:

1. pthread_attr_setscope(pthread_attr_t *attr, intscope)

2. pthread_attr_getscope(pthread_attr_t *attr, int*scop)

Operating Systems 17CS64

23 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

while (true) {

/* produce an item and put in nextProduced*/ while

(counter == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

while (true){

while (counter ==0)

; // donothing

nextConsumed =buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed */

}

PROCESS SYNCHRONIZATION

 A cooperating process is one that can affect or be affected by other processes

executing in the system. Cooperating processes can either directly share a logical

address space (that is, both code and data) or be allowed to share data only through

files or messages.

 Concurrent access to shared data may result in data inconsistency. To maintain data

consistency, various mechanisms is required to ensure the orderly execution of

cooperating processes that share a logical address space.

Producer- Consumer Problem

 A Producer process produces information that is consumed by consumer process.

 To allow producer and consumer process to run concurrently, A Bounded Buffer can

be used where the items are filled in a buffer by the producer and emptied by the

consumer.

 The original solution allowed at most BUFFER_SIZE - 1 item in the buffer at the

same time. To overcome this deficiency, an integer variable counter, initialized to 0

isadded.

 counter is incremented every time when a new item is added to the buffer and is

decremented every time when one item removed from thebuffer.

The code for the producer process can be modified as follows:

The code for the consumer process can be modified as follows:

Operating Systems 17CS64

24 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Race Condition

When the producer and consumer routines shown above are correct separately, they

may not function correctly when executed concurrently.

 Illustration:

Suppose that the value of the variable counter is currently 5 and that the producer and

consumer processes execute the statements "counter++" and "counter--" concurrently.

The value of the variable counter may be 4, 5, or 6 but the only correct result is

counter == 5, which is generated correctly if the producer and consumer execute

separately.

The value of counter may be incorrect as shown below:

The statement counter++ could be implemented as

register1= counter

register1 = register1 + 1

counter =register1

The statement counter-- could be implemented as

register2 =counter

register2 = register2 – 1

count = register2

The concurrent execution of "counter++" and "counter--" is equivalent to a sequential

execution in which the lower-level statements presented previously are interleaved in some

arbitrary order. One such interleaving is

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1=counter {register1 = 5}

S1: producer execute register1 = register1+1 {register1 = 6}

S2: consumer execute register2=counter {register2 = 5}

S3: consumer execute register2 = register2-1 {register2 = 4}

S4: producer execute counter=register1 {count =6}

S5: consumer execute counter=register2 {count =4}

 Note: It is arrived at the incorrect state "counter == 4", indicating that four buffers

are full, when, in fact, five buffers are full. If we reversed the order of the statements

at T4 and T5, we would arrive at the incorrect state "counter==6".

 Definition Race Condition: A situation where several processes access and

manipulate the same data concurrently and the outcome of the execution depends on

the particular order in which the access takes place, is called a RaceCondition.

 To guard against the race condition, ensure that only one process at a time can be

manipulating the variable counter. To make such a guarantee, the processes are

synchronized in some way.

Operating Systems 17CS64

25 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The Critical Section Problems

 Consider a system consisting of n processes {Po, P1 , ... ,Pn-1}.

 Each process has a segment of code, called a critical section in which the process

may be changing common variables, updating a table, writing a file, and soon

 The important feature of the system is that, when one process is executing in its

critical section, no other process is to be allowed to execute in its critical section.

That is, no two processes are executing in their critical sections at the sametime.

 The critical-section problem is to design a protocol that the processes can use to

cooperate.

The general structure of a typical process Pi is shown in below figure.

 Each process must request permission to enter its critical section. The section of code

implementing this request is the entry section.

 The critical section may be followed by an exit section. The remaining code is the

reminder section.

Figure: General structure of a typical process Pi

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion:If process Pi is executing in its critical section, then no other

processes can be executing in their criticalsections.

2. Progress:If no process is executing in its critical section and some processes wish to

enter their critical sections, then only those processes that are not executing in their

remainder sections can participate in deciding which will enter its critical section

next, and this selection cannot be postponedindefinitely.

3. Bounded waiting:There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a

request to enter its critical section and before that request isgranted.

Operating Systems 17CS64

26 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

PETERSON'S SOLUTION

 This is a classic software-based solution to the critical-section problem. There are

no guarantees that Peterson's solution will work correctly on modern computer

architectures

 Peterson's solution provides a good algorithmic description of solving the critical-

section problem and illustrates some of the complexities involved in designing

software that addresses the requirements of mutual exclusion, progress, and

bounded waiting.

Peterson's solution is restricted to two processes that alternate execution between their

critical sections and remainder sections. The processes are numbered Po and P1 or Pi and Pj

where j = 1-i

Peterson's solution requires the two processes to share two data items:

int turn;

boolean flag[2];

 turn: The variable turn indicates whose turn it is to enter its critical section. Ex:

if turn == i, then process Pi is allowed to execute in its criticalsection

 flag: The flag array is used to indicate if a process is ready to enter its critical

section. Ex: if flag [i] is true, this value indicates that Pi is ready to enter its

critical section.

Figure: The structure of process Pi in Peterson's solution

 To enter the critical section, process Pi first sets flag [i] to be true and then sets

turn to the value j, thereby asserting that if the other process wishes to enter the

critical section, it can doso.

 If both processes try to enter at the same time, turn will be set to both i and j at

roughly the same time. Only one of these assignments will last, the other will

occur but will be over written immediately.

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j)

; // do nothing

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Operating Systems 17CS64

27 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The eventual value of turn determines which of the two processes is allowed to

enter its critical sectionfirst

To prove that solution is correct, then we need to show that

1. Mutual exclusion ispreserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

1. To prove Mutual exclusion

 Each pi enters its critical section only if either flag [j] == false or turn ==i.

 If both processes can be executing in their critical sections at the same time, then

flag [0] == flag [1]==true.

 These two observations imply that Pi and Pj could not have successfully executed

their while statements at about the same time, since the value of turn can be either 0

or 1 but cannot be both. Hence, one of the processes (Pj) must have successfully

executed the while statement, whereas Pi had to execute at least one additional

statement ("turn==j").

 However, at that time, flag [j] == true and turn == j, and this condition will persist as

long as Pi is in its critical section, as a result, mutual exclusion ispreserved.

2. To prove Progress and Bounded-waiting

 A process Pi can be prevented from entering the critical section only if it is stuck in

the while loop with the condition flag [j] ==true and turn=== j; this loop is the only

onepossible.

 If Pj is not ready to enter the critical section, then flag [j] ==false, and Pi can enter its

criticalsection.

 If Pj has set flag [j] = true and is also executing in its while statement, then either

turn === i or turn ===j.

 If turn == i, then Pi will enter the criticalsection.

 If turn== j, then Pj will enter the criticalsection.

 However, once Pj exits its critical section, it will reset flag [j] = false, allowing Pi to

enter its criticalsection.

 If Pj resets flag [j] to true, it must also set turn to i.

 Thus, since Pi does not change the value of the variable turn while executing the

while statement, Pi will enter the critical section (progress) after at most one entry by

Pj (boundedwaiting).

Operating Systems 17CS64

28 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

SYNCHRONIZATIONHARDWARE

 The solution to the critical-section problem requires a simple tool-alock.

 Race conditions are prevented by requiring that critical regions be protected by

locks. That is, a process must acquire a lock before entering a critical section and

it releases the lock when it exits the critical section

Figure: Solution to the critical-section problem using locks.

 The critical-section problem could be solved simply in a uniprocessor

environment if interrupts are prevented from occurring while a shared variable

was being modified. In this manner, the current sequence of instructions would be

allowed to execute in order without preemption. No other instructions would be

run, so no unexpected modifications could be made to the sharedvariable.

 But this solution is not as feasible in a multiprocessor environment. Disabling

interrupts on a multiprocessor can be time consuming, as the message is passed to

all the processors. This message passing delays entry into each critical section,

and system efficiency decreases.

TestAndSet () and Swap() instructions

 Many modern computer systems provide special hardware instructions that

allowto test and modify the content of a word or to swap the contents of two

words atomically, that is, as one uninterruptibleunit.

 Special instructions such as TestAndSet () and Swap() instructions are used to

solve the critical-sectionproblem

 The TestAndSet () instruction can be defined as shown in Figure. The important

characteristic of this instruction is that it is executedatomically.

Definition:
booleanTestAndSet (boolean *target)

{

booleanrv = *target;

*target = TRUE;

return rv:

}

Figure: The definition of the TestAndSet () instruction.

Operating Systems 17CS64

29 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

do {

key = TRUE;

while (key == TRUE) Swap

(&lock, &key);

// critical section

lock =FALSE;

// remaindersection

} while (TRUE);

 Thus, if two TestAndSet () instructions are executed simultaneously, they will be

executed sequentially in some arbitrary order. If the machine supports the

TestAndSet () instruction, then implementation of mutual exclusion can be done by

declaring a Boolean variable lock, initialized to false.

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock =FALSE;

// remaindersection

} while (TRUE);

Figure: Mutual-exclusion implementation with TestAndSet ()

 The Swap() instruction, operates on the contents of two words, it is defined as shown

below

Definition:
void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

Figure: The definition of the Swap () instruction

 Swap() it is executed atomically. If the machine supports the Swap() instruction, then

mutual exclusion can be provided as follows.

 A global Boolean variable lock is declared and is initialized to false. In addition, each

process has a local Boolean variable key. The structure of process Pi is shown in

below

Figure: Mutual-exclusion implementation with the Swap() instruction

Operating Systems 17CS64

30 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section j

= (i + 1) % n;

while ((j != i) && !waiting[j])
j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

waiting[j] = FALSE;

// remainder section

} while (TRUE);

 These algorithms satisfy the mutual-exclusion requirement, they do not satisfy the

bounded- waiting requirement.

 Below algorithm using the TestAndSet () instruction that satisfies all the critical-

section requirements. The common data structures are

boolean waiting[n];

boolean lock;

These data structures are initialized to false.

Figure:Bounded-waiting mutual exclusion with TestAndSet ()

Operating Systems 17CS64

31 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

1. To prove the mutual exclusionrequirement

 Note that process Pi can enter its critical section only if either waiting [i] == false or

key ==false.

 The value of key can become false only if the TestAndSet() isexecuted.

 The first process to execute the TestAndSet() will find key== false; all others must

wait.

 The variable waiting[i] can become false only if another process leaves its critical

section; only one waiting[i] is set to false, maintaining the mutual-exclusion

requirement.

2. To prove the progressrequirement

Note that, the arguments presented for mutual exclusion also apply here, since a process

exiting the critical section either sets lock to false or sets waiting[j] to false. Both allow a

process that is waiting to enter its critical section to proceed.

3. To prove the bounded-waitingrequirement

 Note that, when a process leaves its critical section, it scans the array waiting in the

cyclic ordering (i + 1, i + 2, ... , n 1, 0, ... , i 1).

 It designates the first process in this ordering that is in the entry section (waiting[j]

==true) as the next one to enter the critical section. Any process waiting to enter its

critical section will thus do so within n - 1 turns.

SEMAPHORE

 A semaphore is a synchronization tool is used solve various synchronization

problem and can be implementedefficiently.

 Semaphore do not require busywaiting.

 A semaphore S is an integer variable that, is accessed only through two standard

atomic operations: wait () and signal (). The wait () operation was originally

termed P and signal() was calledV.

Definition of wait ():

wait (S) {

while S <= 0

; // no-op

S--;

Definition of signal ():

signal (S) {

S++;}

Operating Systems 17CS64

32 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

 All modifications to the integer value of the semaphore in the wait () and signal()

operations must be executed indivisibly. That is, when one process modifies the

semaphore value, no other process can simultaneously modify that same semaphore

value.

Binary semaphore

 The value of a binary semaphore can range only between 0 and1.

 Binary semaphores are known as mutex locks, as they are locks that provide

mutual exclusion. Binary semaphores to deal with the critical-section problem for

multiple processes. Then processes share a semaphore, mutex, initialized to1

Each process Pi is organized as shown in below figure

Figure: Mutual-exclusion implementation with semaphores

Counting semaphore

 The value of a counting semaphore can range over an unrestricteddomain.

 Counting semaphores can be used to control access to a given resource

consisting of a finite number ofinstances.

 The semaphore is initialized to the number of resources available. Each process

that wishes to use a resource performs a wait() operation on the semaphore.

When a process releases a resource, it performs a signal()operation.

 When the count for the semaphore goes to 0, all resources are being used. After

that, processes that wish to use a resource will block until the count becomes

greater than 0.

Implementation

 The main disadvantage of the semaphore definition requires busywaiting.

 While a process is in its critical section, any other process that tries to enter its

critical section must loop continuously in the entry code.

 This continual looping is clearly a problem in a real multiprogramming system,

where a single CPU is shared among many processes.

Operating Systems 17CS64

33 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Busy waiting wastes CPU cycles that some other process might be able to use

productively. This type of semaphore is also called a spinlock because the process

"spins" while waiting for thelock.

Semaphore implementation with no busy waiting

 The definition of the wait() and signal() semaphore operations ismodified.

 When a process executes the wait () operation and finds that the semaphore value

is not positive, it mustwait.

 However, rather than engaging in busy waiting, the process can block itself. The

block operation places a process into a waiting queue associated with the

semaphore, and the state of the process is switched to the waiting state. Then

control is transferred to the CPU scheduler, which selects another process

toexecute.

 A process that is blocked, waiting on a semaphore S, should be restarted when

some other process executes a signal() operation. The process is restarted by a

wakeup() operation, which changes the process from the waiting state to the

ready state. The process is then placed in the readyqueue.

 To implement semaphores under this definition, we define a semaphore as a "C'

struct:

typedefstruct {

int value;

struct process *list;

} semaphore;

 Each semaphore has an integer value and a list of processes list. When a process must

wait on a semaphore, it is added to the list of processes. A signal() operation removes

one process from the list of waiting processes and awakens that process.

 The wait() semaphore operation can now be defined as:

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S-

>list; block();

}}

Operating Systems 17CS64

34 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The signal () semaphore operation can now be defined as

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P

from S->list;

wakeup(P);

}

}

 The block() operation suspends the process that invokes it. The wakeup(P)

operation resumes the execution of a blocked process P. These two operations

are provided by the operating system as basic systemcalls.

 In this implementation semaphore values may be negative. If a semaphore value

is negative, its magnitude is the number of processes waiting on thatsemaphore.

Deadlocks and Starvation

 The implementation of a semaphore with a waiting queue may result in a situation

where two or more processes are waiting indefinitely for an event that can be caused

only by one of the waiting processes. The event in question is the execution of a

signal() operation. When such a state is reached, these processes are said to be

deadlocked.

 To illustrate this, consider a system consisting of two processes, Po and P1, each

accessing two semaphores, S and Q, set to the value 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. .

. .

signal(S); signal(Q);

signal(Q); signal(S);

 Suppose that Po executes wait (S) and then P1 executes wait (Q). When Po

executes wait (Q), it must wait until P1 executes signal (Q). Similarly, when P1

executes wait (S), it must wait until Po executes signal(S). Since these signal()

operations cam1ot be executed, Po and P1 are deadlocked.

Operating Systems 17CS64

35 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Another problem related to deadlocks is indefinite blocking or starvation: A

situation in which processes wait indefinitely within the semaphore.

 Indefinite blocking may occur if we remove processes from the list associated with

a semaphore in LIFO (last-in, first-out) order.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

 Bounded-BufferProblem

 Readers and WritersProblem

 Dining-PhilosophersProblem

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutexinitialized to the value 1

 Semaphore full initialized to the value0

 Semaphore empty initialized to the value N.

 The structure of the producer process:

 The structure of the consumerprocess:

Operating Systems 17CS64

36 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Readers-Writers Problem

 A data set is shared among a number of concurrentprocesses

 Readers – only read the data set; they do not perform anyupdates

 Writers – can both read andwrite.

 Problem – allow multiple readers to read at the same time. Only one single writer

can access the shared data at the sametime.

 SharedData

 Dataset

 Semaphore mutexinitialized to 1.

 Semaphore wrtinitialized to1.

 Integer readcountinitialized to 0.

 The structure of a writerprocess

 The structure of a readerprocess

Operating Systems 17CS64

37 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers

share a circular table surrounded by five chairs, each belonging to one philosopher. In the

center of the table is a bowl of rice, and the table is laid with five singlechopsticks.

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her

(the chopsticks that are between her and her left and right neighbors). A philosopher

may pick up only one chopstick at a time. When a hungry philosopher has both her

chopsticks at the same time, she eats without releasing the chopsticks. When she is

finished eating, she puts down both chopsticks and starts thinkingagain.

It is a simple representation of the need to allocate several resources among several

processes in a deadlock-free and starvation-freemanner.

Solution:One simple solution is to represent each chopstick with a semaphore. A

philosopher tries to grab a chopstick by executing a wait() operation on thatsemaphore.

She releases her chopsticks by executing the signal() operation on the appropriate

semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of

philosopher iis shown

Several possible remedies to the deadlock problem are replaced by:

 Allow at most four philosophers to be sitting simultaneously at thetable.

Operating Systems 17CS64

38 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Allowaphilosophertopickupherchopsticksonlyifbothchopsticksareavailable.

 Use an asymmetric solution—that is, an odd-numbered philosopher picks up

first her left chopstick and then her right chopstick, whereas an even numbered

philosopher picks up her right chopstick and then her leftchopstick.

Problems with Semaphores

Correct use of semaphore operations:

 signal (mutex) …. wait (mutex) : Replace signal with wait andvice-versa

 wait (mutex) … wait(mutex)
 Omitting of wait (mutex) or signal (mutex) (orboth)

Monitor

 An abstract data type—or ADT—encapsulates data with a set of functions to

operate on that data that are independent of any specific implementation of the ADT.

 A monitor typeis an ADT that includes a set of programmer defined operations that

are provided with mutual exclusion within the monitor. The monitor type also

declares the variables whose values define the state of an instance of that type, along

with the bodies of functions that operate on those variables.

 The monitor construct ensures that only one process at a time is active within the

monitor.

Operating Systems 17CS64

39 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 To have a powerful Synchronization schemes a condition construct is added to the

Monitor. So synchronization scheme can be defined with one or more variables of type

condition Two operations on a conditionvariable:

 Condition x, y

 The only operations that can be invoked on a condition variable are wait() and signal().

The operation

x.wait () – a process that invokes the operation is suspended.

x.signal () – resumes one of processes (if any) that invoked x.wait ()

Fig: Monitor with Condition Variables

Operating Systems 17CS64

40 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Solution to Dining Philosophers

Each philosopher I invokes the operations pickup() and putdown() in the following

 For each monitor, a semaphore mutex (initialized to 1) is provided. A process

must execute wait(mutex) before entering the monitor and must execute

signal(mutex) after leaving the monitor.

 Since a signaling process must wait until the resumed process either leaves or

waits, an additional semaphore, next, is introduced, initialized to 0. The

signaling processes can use next to suspend themselves. An integer variable

next_count is also provided to count the number of processes suspended on next.

Thus ,each external function F is replaced by

Operating Systems 17CS64

41 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 For each condition x, we introduce a semaphore x sem and an integer variable x

count, both initialized to 0. The operation x.wait() can now be implemented as

 The operation x.signal() can be implementedas

Resuming Processes within a Monitor

If several processes are suspended on condition x, and an x.signal() operation is

executed by some process, then to determine which of the suspended processes should

be resumed next, one simple solution is to use a first-come, first-served (FCFS)

ordering, so that the process that has been waiting the longest is resumed first. For this

purpose, the conditional-wait construct can be used. This construct has theform

x.wait(c);

where c is an integer expression that is evaluated when the wait() operation is executed.

The value of c, which is called a priority number, is then stored with the name of the

process that is suspended. When x.signal() is executed, the process with the smallest

priority number is resumednext.

Operating Systems 17CS64

42 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 The Resource Allocator monitor shown in the above Figure, which controls the

allocation of a single resource among competingprocesses.

 A process that needs to access the resource in question must observe the following

sequence:

R.acquire(t);

...

access the resource;

...

R.release();

where R is an instance of type ResourceAllocator.

 The monitor concept cannot guarantee that the preceding access sequence will be

observed. In particular, the following problems can occur:

 A process might access a resource without first gaining access permission to the

resource.

 A process might never release a resource once it has been granted access to the

resource.

 A process might attempt to release a resource that it neverrequested.

 A process might request the same resource twice (without first releasing the

resource).

Operating Systems 17CS64

43 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

QUESTION BANK

1. What is a thread? What is TCB?

2. Write a note on multithreading models.

3. What is thread cancellation?

4. What is signal handling?

5. Explain The various Threading issues

6. What do you mean by

a. Thread pool

b. Thread specific data

c. Scheduler activation

7. What is pre-emptive scheduling and non-pre-emptive scheduling?

8. Define the following:

a. CPU utilization

b. Throughput

c. Turnaround time

d. Waiting time

e. Response time

9. Explain scheduling algorithms with examples.

10. Explain multilevel and multilevel feedback queue.

11. For the following set of process find the avg. waiting time and avg. turn around using Gantt

chart for a) FCFS b) SJF (primitive and non-primitive) c) RR (quantum= 4)

Process Arrival Time Burst Time

P1 0 4

P2 1 2

P3 2 5

P4 3 4

12. What are semaphores? Explain two primitive semaphore operations. What are its advantages?

13. Explain any one synchronization problem for testing newly proposed sync scheme

14. Explain three requirements that a solution to critical –section problem must satisfy.

Operating Systems 17CS64

44 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

15. State Dining Philosopher’s problem and give a solution using semaphores. Write structure of

philosopher.

16. What do you mean by binary semaphore and counting semaphore? With C struct, explain

implementation of wait() and signal. Semaphore as General Synchronization Tool.

17. Describe term monitor. Explain solution to dining philosophers.

18. What are semaphores? Explain solution to producer-cons umer problem using semaphores

19. What is critical section ? Explain the various methods to implement process synchronization.

20. Explain the various classical synchronization problems.

	Motivation for Multithreaded Programming
	Benefits of Multithreaded Programming
	 Responsiveness A program may be allowed to continue running even if part of it is blocked. Thus, increasing responsiveness to the user.
	 Resource Sharing By default, threads share the memory (and resources) of the process to which they belong. Thus, an application is allowed to have several different threads of activity within the sameaddress-space.
	 Economy Allocating memory and resources for process-creation is costly. Thus, it is more economical to create and context-switchthreads.
	 Utilization of Multiprocessor Architectures In a multiprocessor architecture, threads may be running in parallel on different processors. Thus, parallelism will beincreased.

	MULTITHREADING MODELS
	Many-to-One Model
	One-to-One Model
	Many-to-Many Model
	Two Level Model

	Thread Libraries
	1. First Approach:
	Provides a library entirely in user space with no kernel support. All code and data structures for the library exist in the user space.
	2. SecondApproach

	Pthreads
	Win32 threads
	Java Threads
	THREADING ISSUES
	Thread Cancellation
	Signal Handling
	1. Synchronoussignals
	 Delivered to the same process that performed the operation causing the signal.
	2. Asynchronoussignals
	1. A Default SignalHandler
	2. A User-defined SignalHandler

	THREAD POOLS
	THREAD SPECIFIC DATA
	SCHEDULER ACTIVATIONS
	CPU-I/0 Burst Cycle
	CPU Scheduler
	CPU Scheduling
	Non Preemptive Scheduling
	Preemptive Scheduling
	Dispatcher
	SCHEDULING ALGORITHMS
	FCFS Scheduling
	SJF Scheduling
	1. Non preemptiveSJF
	2. PreemptiveSJF

	Priority Scheduling
	Round Robin Scheduling
	Multilevel Feedback Queue Scheduling
	MULTIPLE PROCESSOR SCHEDULING
	AsymmetricMultiprocessing
	Symmetric Multiprocessing

	Processor Affinity
	1. SoftAffinity
	2. Hard Affinity

	Load Balancing
	1. PushMigration
	A specific task periodically checks the load on each processor and if it finds an imbalance, it evenly distributes the load to idle processors.
	2. PullMigration

	Symmetric Multithreading
	THREAD SCHEDULING
	Contention Scope
	1. Process-Contention scope
	2. System-Contentionscope

	Pthread Scheduling
	 Race Condition
	 Illustration:
	The Critical Section Problems
	PETERSON'S SOLUTION
	1. To prove Mutual exclusion
	2. To prove Progress and Bounded-waiting

	SYNCHRONIZATIONHARDWARE
	TestAndSet () and Swap() instructions
	Definition:
	Definition:
	1. To prove the mutual exclusionrequirement
	2. To prove the progressrequirement
	3. To prove the bounded-waitingrequirement

	 It designates the first process in this ordering that is in the entry section (waiting[j] ==true) as the next one to enter the critical section. Any process waiting to enter its critical section will thus do so within n - 1 turns.
	SEMAPHORE
	Definition of wait ():
	Definition of signal ():
	Binary semaphore
	Counting semaphore
	Implementation
	Deadlocks and Starvation
	Resuming Processes within a Monitor

