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Course Objectives

This course will enable students to

1. Define machine learning and understand the basic theory underlying machine learning.

2. Differentiate supervised, unsupervised and reinforcement learning

3. Understand the basic concepts of learning and decision trees.

4. Understand neural networks and Bayesian techniques for problems appear in machine learning

5. Understand the instant based learning and reinforced learning

6. Perform statistical analysis of machine learning techniques.
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Course Outcomes

After studying this course, students will be able to

1. Choose the learning techniques and investigate concept learning

2. Identify the characteristics of decision tree and solve problems associated with

3. Apply effectively neural networks for appropriate applications

4. Apply Bayesian techniques and derive effectively learning rules

5. Evaluate hypothesis and investigate instant based learning and reinforced learning
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Prerequisites

For Machine Learning Course we recommend that students meet the following 
prerequisites:

• Basic programming skills (in Python)

• Algorithm design

• Basics of probability & statistics
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Content

Module – 1 Introduction, Concept Learning

Module – 2 Decision Tree Learning

Module – 3 Artificial Neural Networks

Module – 4 Bayesian Learning

Module – 5 Evaluating Hypothesis, Instance Based Learning, 

Reinforcement Learning
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MODULE -1



Introduction

Ever since computers were invented, we have wondered whether they might be
made to learn. If we could understand how to program them to learn-to improve
automatically with experience-the impact would be dramatic.

• Imagine computers learning from medical records which treatments are most
effective for new diseases

• Houses learning from experience to optimize energy costs based on the particular
usage patterns of their occupants.

• Personal software assistants learning the evolving interests of their users in order
to highlight especially relevant stories from the online morning newspaper
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Examples of Successful Applications of 
Machine Learning

• Learning to recognize spoken words 

• Learning to drive an autonomous vehicle 

• Learning to classify new astronomical structures 

• Learning to play world-class backgammon
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Why is Machine Learning Important?

• Some tasks cannot be defined well, except by examples (e.g., recognizing 
people).

• Relationships and correlations can be hidden within large amounts of data. 
Machine Learning/Data Mining may be able to find these relationships.

• Human designers often produce machines that do not work as well as desired 
in the environments in which they are used.

• The amount of knowledge available about certain tasks might be too large for 
explicit encoding by humans (e.g., medical diagnostic).

• Environments change over time.

• New knowledge about tasks is constantly being discovered by humans. It may 
be difficult to continuously re-design systems “by hand”.
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Areas of Influence for Machine Learning

• Statistics: How best to use samples drawn from unknown probability distributions to
help decide from which distribution some new sample is drawn?

• Brain Models: Non-linear elements with weighted inputs (Artificial Neural
Networks) have been suggested as simple models of biological neurons.

• Adaptive Control Theory: How to deal with controlling a process having unknown
parameters that must be estimated during operation?

• Psychology: How to model human performance on various learning tasks?

• Artificial Intelligence: How to write algorithms to acquire the knowledge humans are
able to acquire, at least, as well as humans?

• Evolutionary Models: How to model certain aspects of biological evolution to
improve the performance of computer programs?
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Machine Learning: A Definition

A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Why “Learn”?

Learning is used when:

• Human expertise does not exist (navigating on Mars)

• Humans are unable to explain their expertise (speech recognition)

• Solution changes in time (routing on a computer network)

• Solution needs to be adapted to particular cases (user biometrics)
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Well-Posed Learning Problem

Definition: A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.

To have a well-defined learning problem, three features needs to be identified:

1. The class of tasks

2. The measure of performance to be improved

3. The source of experience
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Checkers Game
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Game Basics

• Checkers is played by two players. Each player begins the game with 12 colored
discs. (One set of pieces is black and the other red.) Each player places his or her
pieces on the 12 dark squares closest to him or her. Black moves first. Players
then alternate moves.

• The board consists of 64 squares, alternating between 32 dark and 32 light
squares.

• It is positioned so that each player has a light square on the right side corner
closest to him or her.

• A player wins the game when the opponent cannot make a move. In most cases,
this is because all of the opponent's pieces have been captured, but it could also
be because all of his pieces are blocked in.
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Rules of the Game

• Moves are allowed only on the dark squares, so pieces always move diagonally.
Single pieces are always limited to forward moves (toward the opponent).

• A piece making a non-capturing move (not involving a jump) may move only
one square.

• A piece making a capturing move (a jump) leaps over one of the opponent's
pieces, landing in a straight diagonal line on the other side. Only one piece may
be captured in a single jump; however, multiple jumps are allowed during a
single turn.

• When a piece is captured, it is removed from the board.
• If a player is able to make a capture, there is no option; the jump must be made.
• If more than one capture is available, the player is free to choose whichever he or

she prefers.
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Rules of the Game Cont.

• When a piece reaches the furthest row from the player who controls that piece, it
is crowned and becomes a king. One of the pieces which had been captured is
placed on top of the king so that it is twice as high as a single piece.

• Kings are limited to moving diagonally but may move both forward and
backward. (Remember that single pieces, i.e. non-kings, are always limited to
forward moves.)

• Kings may combine jumps in several directions, forward and backward, on the
same turn. Single pieces may shift direction diagonally during a multiple capture
turn, but must always jump forward (toward the opponent).
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Well-Defined Learning Problem

A checkers learning problem:

 Task T: playing checkers

 Performance measure P: percent of games won against opponents

 Training experience E: playing practice games against itself

A handwriting recognition learning problem:

 Task T: recognizing and classifying handwritten words within images

 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given 

classifications
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A robot driving learning problem:

 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged by 

human overseer)

 Training experience E: a sequence of images and steering commands recorded 

while observing a human driver
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Designing a Learning System

1. Choosing the Training Experience

2. Choosing the Target Function

3. Choosing a Representation for the Target Function

4. Choosing a Function Approximation Algorithm

1. Estimating training values

2. Adjusting the weights

5. The Final Design
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The basic design issues and approaches to machine
learning is illustrated by considering designing a
program to learn to play checkers, with the goal of
entering it in the world checkers tournament
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1. Choosing the Training Experience

• The first design choice is to choose the type of training experience from which
the system will learn.

• The type of training experience available can have a significant impact on
success or failure of the learner.

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides direct or indirect feedback regarding
the choices made by the performance system.

2. The degree to which the learner controls the sequence of training examples
3. How well it represents the distribution of examples over which the final system

performance P must be measured.
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1. Whether the training experience provides direct or indirect feedback regarding
the choices made by the performance system.

For example, in checkers game:
• In learning to play checkers, the system might learn from direct training examples consisting of individual

checkers board states and the correct move for each.

• Indirect training examples consisting of the move sequences and final outcomes of various games played.

• The information about the correctness of specific moves early in the game must be inferred indirectly from
the fact that the game was eventually won or lost.

• Here the learner faces an additional problem of credit assignment, or determining the degree to which each
move in the sequence deserves credit or blame for the final outcome.

• Credit assignment can be a particularly difficult problem because the game can be lost even when early
moves are optimal, if these are followed later by poor moves.

• Hence, learning from direct training feedback is typically easier than learning from indirect feedback.
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2. A second important attribute of the training experience is the degree to which the 

learner controls the sequence of training examples

For example, in checkers game:
• The learner might depends on the teacher to select informative board states and to provide the correct move

for each.

• Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the
teacher for the correct move.

• The learner may have complete control over both the board states and (indirect) training classifications, as it
does when it learns by playing against itself with no teacher present.

• Notice in this last case the learner may choose between experimenting with novel board states that it has not
yet considered, or honing its skill by playing minor variations of lines of play it currently finds most
promising.
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3. A third attribute of the training experience is how well it represents the 

distribution of examples over which the final system performance P must be 
measured.

Learning is most reliable when the training examples follow a distribution similar to that of future test 
examples.

For example, in checkers game: 
• In checkers learning scenario, the performance metric P is the percent of games the system wins in the world

tournament.

• If its training experience E consists only of games played against itself, there is an danger that this training
experience might not be fully representative of the distribution of situations over which it will later be tested.
For example, the learner might never encounter certain crucial board states that are very likely to be played
by the human checkers champion.

• It is necessary to learn from a distribution of examples that is somewhat different from those on which the
final system will be evaluated. Such situations are problematic because mastery of one distribution of
examples will not necessary lead to strong performance over some other distribution.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 26



2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program.
• Lets begin with a checkers-playing program that can generate the legal moves

from any board state.
• The program needs only to learn how to choose the best move from among these

legal moves. This learning task is representative of a large class of tasks for
which the legal moves that define some large search space are known a priori, but
for which the best search strategy is not known.
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Given this setting where we must learn to choose among the legal moves, the most
obvious choice for the type of information to be learned is a program, or function,
that chooses the best move for any given board state.

1. Let ChooseMove be the target function and the notation is
ChooseMove : B M

which indicate that this function accepts as input any board from the set of legal
board states B and produces as output some move from the set of legal moves M.

ChooseMove is an choice for the target function in checkers example, but this
function will turn out to be very difficult to learn given the kind of indirect training
experience available to our system
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2. An alternative target function is an evaluation function that assigns a numerical 

score to any given board state
Let the target function V and the notation 

V : B        R

which denote that V maps any legal board state from the set B to some real value

We intend for this target function V to assign higher scores to better board states. If
the system can successfully learn such a target function V, then it can easily use it to
select the best move from any current board position.
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Let us define the target value V(b) for an arbitrary board state b in B, as follows:
1. if b is a final board state that is won, then V(b) = 100
2. if b is a final board state that is lost, then V(b) = -100
3. if b is a final board state that is drawn, then V(b) = 0
4. if b is a not a final state in the game, then V(b) = V(b' ),

where b' is the best final board state that can be achieved starting from b and
playing optimally until the end of the game
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3. Choosing a Representation for the 
Target Function

let us choose a simple representation - for any given board state, the function c will 
be calculated as a linear combination of the following board features:

xl: the number of black pieces on the board
x2: the number of red pieces on the board
x3: the number of black kings on the board
x4: the number of red kings on the board
x5: the number of black pieces threatened by red (i.e., which can be

captured on red's next turn)
x6: the number of red pieces threatened by black
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Thus, learning program will represent as a linear function of the form 

Where,
• w0 through w6 are numerical coefficients, or weights, to be chosen by the

learning algorithm.
• Learned values for the weights w1 through w6 will determine the relative

importance of the various board features in determining the value of the board
• The weight w0 will provide an additive constant to the board value
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Partial design of a checkers learning program:

• Task T: playing checkers
• Performance measure P: percent of games won in the world tournament
• Training experience E: games played against itself
• Target function: V: Board         R
• Target function representation

The first three items above correspond to the specification of the learning task,
whereas the final two items constitute design choices for the implementation of the 
learning program.
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4. Choosing a Function Approximation 
Algorithm

• In order to learn the target function f we require a set of training examples, each 
describing a specific board state b and the training value Vtrain(b) for b. 

• Each training example is an ordered pair of the form (b, Vtrain(b)). 

• For instance, the following training example d escribes a board state b in 
which black has won the game (note x2 = 0 indicates that red has no remaining 
pieces) and for which the target function value Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)
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Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the 
learner

2. Adjusts the weights wi to best fit these training examples
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1. Estimating training values

A simple approach for estimating training values for intermediate board states is to 
assign the training value of Vtrain(b) for any intermediate board state b to be 
V̂(Successor(b)) 

Where ,
V̂ is the learner's current approximation to V
Successor(b) denotes the next board state following b for which it is again the 
program's turn to move 

Rule for estimating training values

Vtrain(b) ← V̂ (Successor(b))
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2. Adjusting the weights

Specify the learning algorithm for choosing the weights wi to best fit the set of 
training examples {(b, Vtrain(b))}

A first step is to define what we mean by the bestfit to the training data. 
• One common approach is to define the best hypothesis, or set of weights, as that 

which minimizes the squared error E between the training values and the values 
predicted by the hypothesis. 

• Several algorithms are known for finding weights of a linear function that 
minimize E.
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In our case, we require an algorithm that will incrementally refine the weights as
new training examples become available and that will be robust to errors in these
estimated training values

One such algorithm is called the least mean squares, or LMS training rule. For
each observed training example it adjusts the weights a small amount in the
direction that reduces the error on this training example

LMS weight update rule :- For each training example (b, Vtrain(b))
Use the current weights to calculate V̂ (b)

For each weight wi, update it as

wi ← wi + ƞ (Vtrain (b) - V ̂(b)) xi
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Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update.

Working of weight update rule

• When the error (Vtrain(b)- V ̂(b)) is zero, no weights are changed. 
• When (Vtrain(b) - V ̂(b)) is positive (i.e., when V ̂(b) is too low), then each weight 

is increased in proportion to the value of its corresponding feature. This will 
raise the value of V ̂(b), reducing the error.

• If the value of some feature xi is zero, then its weight is not altered regardless of 
the error, so that the only weights updated are those whose features actually 
occur on the training example board.
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5. The Final Design

The final design of checkers learning system can be described by four distinct 
program modules that represent the central components in many learning systems
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1. The Performance System is the module that must solve the given performance
task by using the learned target function(s).
It takes an instance of a new problem (new game) as input and produces a trace of
its solution (game history) as output.
In checkers game, the strategy used by the Performance System to select its next
move at each step is determined by the learned V̂ evaluation function. Therefore, we
expect its performance to improve as this evaluation function becomes increasingly
accurate.

2. The Critic takes as input the history or trace of the game and produces as output
a set of training examples of the target function. As shown in the diagram, each
training example in this case corresponds to some game state in the trace, along
with an estimate Vtrain of the target function value for this example.
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3. The Generalizer takes as input the training examples and produces an output
hypothesis that is its estimate of the target function.
It generalizes from the specific training examples, hypothesizing a general function
that covers these examples and other cases beyond the training examples.
In our example, the Generalizer corresponds to the LMS algorithm, and the output
hypothesis is the function V ̂ described by the learned weights w0, . . . , W6.

4. The Experiment Generator takes as input the current hypothesis and outputs a
new problem (i.e., initial board state) for the Performance System to explore. Its
role is to pick new practice problems that will maximize the learning rate of the
overall system.
In our example, the Experiment Generator always proposes the same initial game 
board to begin a new game. 
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The sequence of design choices made for the checkers program is summarized in 
below figure
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Issues in Machine Learning

• What algorithms exist for learning general target functions from specific training
examples? In what settings will particular algorithms converge to the desired
function, given sufficient training data? Which algorithms perform best for
which types of problems and representations?

• How much training data is sufficient? What general bounds can be found to
relate the confidence in learned hypotheses to the amount of training experience
and the character of the learner's hypothesis space?

• When and how can prior knowledge held by the learner guide the process of
generalizing from examples? Can prior knowledge be helpful even when it is
only approximately correct?
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• What is the best strategy for choosing a useful next training experience, and how
does the choice of this strategy alter the complexity of the learning problem?

• What is the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should the
system attempt to learn? Can this process itself be automated?

• How can the learner automatically alter its representation to improve its ability to
represent and learn the target function?
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Concept Learning

• Learning involves acquiring general concepts from specific training examples.
Example: People continually learn general concepts or categories such as "bird,"
"car," "situations in which I should study more in order to pass the exam," etc.

• Each such concept can be viewed as describing some subset of objects or events
defined over a larger set

• Alternatively, each concept can be thought of as a Boolean-valued function
defined over this larger set. (Example: A function defined over all animals, whose
value is true for birds and false for other animals).

Concept learning - Inferring a Boolean-valued function from training examples of 
its input and output
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A Concept Learning Task

Consider the example task of learning the target concept

"Days on which my friend Aldo enjoys his favorite water sport." 

Table- Describes a set of example days, each represented by a set of attributes

Example  Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes
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The attribute EnjoySport indicates whether or not a Person enjoys his favorite
water sport on this day.

The task is to learn to predict the value of EnjoySport

for an arbitrary day, based on the values of its other 
attributes ?
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What hypothesis representation is provided to the learner?

Let’s consider a simple representation in which each hypothesis consists of a
conjunction of constraints on the instance attributes.

Let each hypothesis be a vector of six constraints, specifying the values of the six
attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.

For each attribute, the hypothesis will either
• Indicate by a "?' that any value is acceptable for this attribute,
• Specify a single required value (e.g., Warm) for the attribute, or
• Indicate by a "Φ" that no value is acceptable
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If some instance x satisfies all the constraints of hypothesis h, then h classifies
x as a positive example (h(x) = 1).

The hypothesis that PERSON enjoys his favorite sport only on cold days with high
humidity (independent of the values of the other attributes) is represented by the
expression

(?, Cold, High, ?, ?, ?)

The most general hypothesis-that every day is a positive example-is represented by
(?, ?, ?, ?, ?, ?)

The most specific possible hypothesis-that no day is a positive example-is
represented by

(Φ , Φ, Φ, Φ, Φ, Φ)
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Notation

The set of items over which the concept is defined is called the set of instances, 
which we denote by X.
Example: X is the set of all possible days, each represented by the attributes: Sky, 
AirTemp, Humidity, Wind, Water, and Forecast

The concept or function to be learned is called the target concept, which we denote 
by c. 

c can be any Boolean valued function defined over the instances X
c : X {O, 1}

Example: The target concept corresponds to the value of the attribute EnjoySport

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No).
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• Instances for which c(x) = 1 are called positive examples, or members of the
target concept.

• Instances for which c(x) = 0 are called negative examples, or non-members of
the target concept.

• The ordered pair (x, c(x)) to describe the training example consisting of the
instance x and its target concept value c(x).

• D to denote the set of available training examples
• The symbol H to denote the set of all possible hypotheses that the learner may 

consider regarding the identity of the target concept. Each hypothesis h in H
represents a Boolean-valued function defined over X

h : X       {O, 1}

• The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in 
X.
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Example  Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes
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The Inductive Learning Hypothesis

Any hypothesis found to approximate the target function well over a sufficiently 
large set of training examples will also approximate the target function well over 
other unobserved examples.
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Concept learning as Search

• Concept learning can be viewed as the task of searching through a large space of
hypotheses implicitly defined by the hypothesis representation.

• The goal of this search is to find the hypothesis that best fits the training
examples.

Example, the instances X and hypotheses H in the EnjoySport learning task.
The attribute  Sky has three possible values, and AirTemp, Humidity, Wind, Water

Forecast each have two possible values, the instance space X contains exactly 
• 3.2.2.2.2.2 = 96 Distinct instances
• 5.4.4.4.4.4 = 5120 Syntactically distinct hypotheses within H.

Every hypothesis containing one or more " Φ" symbols represents the empty set of 
instances; that is, it classifies every instance as negative.
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General-to-Specific Ordering of Hypotheses

• Consider the two hypotheses
h1 = (Sunny, ?, ?, Strong, ?, ?)
h2 = (Sunny, ?, ?, ?, ?, ?)

• Consider the sets of instances that are classified positive by hl and by h2.
• h2 imposes fewer constraints on the instance, it classifies more instances as

positive. So, any instance classified positive by hl will also be classified positive
by h2. Therefore, h2 is more general than hl.
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General-to-Specific Ordering of Hypotheses

• Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if 
any instance that satisfies hk also satisfies hi

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is 
more general-than-or-equal-to hk (written hj ≥ hk) if and only if
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• In the figure, the box on the left
represents the set X of all
instances, the box on the right the
set H of all hypotheses.

• Each hypothesis corresponds to
some subset of X-the subset of
instances that it classifies positive.

• The arrows connecting hypotheses
represent the more - general -than

relation, with the arrow pointing
toward the less general hypothesis.

• Note the subset of instances
characterized by h2 subsumes the
subset characterized by h l , hence
h2 is more - general– than h1
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FIND-S: Finding a Maximally Specific 
Hypothesis

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h
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To illustrate this algorithm, assume the learner is given the sequence of training 
examples from the EnjoySport task

The first step of  FIND-S is to initialize h to the most specific hypothesis in H

h - (Ø, Ø, Ø, Ø, Ø, Ø)

Example  Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes
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x1 = <Sunny Warm Normal Strong Warm Same>, +

Observing the first training example, it is clear that our hypothesis is too specific. In
particular, none of the "Ø" constraints in h are satisfied by this example, so each is
replaced by the next more general constraint that fits the example

h1 = <Sunny Warm Normal Strong Warm Same> 

This h is still very specific; it asserts that all instances are negative except for the
single positive training example

x2 = <Sunny, Warm, High, Strong, Warm, Same>, +

The second training example forces the algorithm to further generalize h, this time
substituting a "?' in place of any attribute value in h that is not satisfied by the new
example

h2 = <Sunny Warm ? Strong Warm Same>
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x3 = <Rainy, Cold, High, Strong, Warm, Change>, -

Upon encountering the third training the algorithm makes no change to h. The
FIND-S algorithm simply ignores every negative example.

h3 = < Sunny Warm ? Strong Warm Same>

x4 =  <Sunny Warm High Strong Cool Change>, +

The fourth example leads to a further generalization of h

h4 = < Sunny Warm ? Strong ? ? >
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The key property of the FIND-S algorithm is

• FIND-S is guaranteed to output the most specific hypothesis within H that is
consistent with the positive training examples

• FIND-S algorithm’s final hypothesis will also be consistent with the negative
examples provided the correct target concept is contained in H, and provided the
training examples are correct.
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Unanswered by FIND-S

1. Has the learner converged to the correct target concept?

2. Why prefer the most specific hypothesis?

3. Are the training examples consistent?

4. What if there are several maximally specific consistent hypotheses?
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Version Space and CANDIDATE 
ELIMINATION Algorithm

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of 
the set of all hypotheses consistent with the training examples

Representation

• Definition: A hypothesis h is consistent with a set of training examples D if and only if 
h(x) = c(x) for each example (x, c(x)) in D.

Consistent(h, D)  ( x, c(x)  D) h(x) = c(x))

Note difference between definitions of consistent and satisfies

• an example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or 
negative example of the target concept. 

• an example x is said to consistent with hypothesis h iff h(x) = c(x)
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Version Space 

A representation of the set of all hypotheses which are consistent with D

Definition: The version space, denoted VSH,D with respect to hypothesis space H
and training examples D, is the subset of hypotheses from H consistent with the
training examples in D

VSH,D {h  H | Consistent(h, D)}
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The LIST-THEN-ELIMINATE Algorithm

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain 
all hypotheses in H and then eliminates any hypothesis found inconsistent with any 
training example. 
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The LIST-THEN-ELIMINATE Algorithm

1. VersionSpace c a list containing every hypothesis in H

2. For each training example, (x, c(x))

remove from VersionSpace any hypothesis h for which h(x) ≠ c(x)

3. Output the list of hypotheses in VersionSpace

The LIST-THEN-ELIMINATE Algorithm

• List-Then-Eliminate works in principle, so long as version space is finite.

• However, since it requires exhaustive enumeration of all hypotheses in practice it is 
not feasible.
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A More Compact Representation for Version Spaces

• The version space is represented by its most general and least general members.

• These members form general and specific boundary sets that delimit the version 
space within the partially ordered hypothesis space.
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Example  Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

• A version space with its
general and specific boundary
sets.

• The version space includes all
six hypotheses shown here, but
can be represented more

simply by S and G.

• Arrows indicate instance of the
more-general-than relation.
This is the version space for
the Enjoysport concept
learning

• problem and training
examples described in below
table
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Definition: The general boundary G, with respect to hypothesis space H and
training data D, is the set of maximally general members of H consistent with D

G {g  H | Consistent(g, D)(g'  H)[(g' g g)  Consistent(g', D)]}

Definition: The specific boundary S, with respect to hypothesis space H and
training data D, is the set of minimally general (i.e., maximally specific) members of
H consistent with D.

S {s  H | Consistent(s, D)(s'  H)[(s gs')  Consistent(s', D)]}
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Version Space representation theorem

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-
valued hypotheses defined over X. Let c : X →{O, 1} be an arbitrary target concept
defined over X, and let D be an arbitrary set of training examples {(x, c(x))). For all
X, H, c, and D such that S and G are well defined,

VSH,D={h  H |(s  S) (g  G) (g g h g s)}
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VSH,D={h  H |(s  S) (g  G) (g g h g s)}

To Prove: 

1. Every h satisfying the right hand side of the above expression is in VS H,D

2. Every member of VS H,D satisfies the right-hand side of the expression

Sketch of proof:

1. let g, h, s be arbitrary members of G, H, S respectively with g g h g s

By the definition of S, s must be satisfied by all positive examples in D. Because h g s , h must also
be satisfied by all positive examples in D.

By the definition of G, g cannot be satisfied by any negative example in D, and because g g h h
cannot be satisfied by any negative example in D. Because h is satisfied by all positive examples in D
and by no negative examples in D, h is consistent with D, and therefore h is a member of VSH,D

2. It can be proven by assuming some h in VSH,D,that does not satisfy the right-hand side of the
expression, then showing that this leads to an inconsistency
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The CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing
all hypotheses from H that are consistent with an observed sequence of training
examples.

Deepak D, Asst. Prof., Dept. of CSE, Canara Engg. College 77



Initialize G to the set of maximally general hypotheses in H

Initialize S to the set of maximally specific hypotheses in H

For each training example d, do

• If d is a positive example

• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d

• Remove s from S

• Add to S all minimal generalizations h of s such that

• h is consistent with d, and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

• Remove g from G

• Add to G all minimal specializations h of g such that

• h is consistent with d, and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another hypothesis in G
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An Illustrative Example
The boundary sets are first initialized to Go and So, the most general and most
specific hypotheses in H.

, , , , , S0

?,  ?,  ?,  ?,  ?,  ?G0
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Sunny, Warm, Normal, Strong, Warm, SameS1

, , , , . S0

?, ?, ?, ?, ?, ?G0, G1

For training example d,

Sunny, Warm, Normal, Strong, Warm, Same  +
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Sunny, Warm, Normal, Strong, Warm, SameS1

?, ?, ?, ?, ?, ?G1, G2

Sunny, Warm, ?, Strong, Warm, SameS2

For training example d,

Sunny, Warm, High, Strong, Warm, Same +
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S2, S3

?, ?, ?, ?, ?, ?G2

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, SameG3

For training example d,

Rainy, Cold, High, Strong, Warm, Change  
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S3

G3

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

G4

Sunny, Warm, ?, Strong, ?, ?S4

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ?

For training example d,

Sunny, Warm, High, Strong, Cool Change  +
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The final version space for the EnjoySport concept learning problem and training 
examples described earlier.
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Inductive Bias

The fundamental questions for inductive inference

• What if the target concept is not contained in the hypothesis space?
• Can we avoid this difficulty by using a hypothesis space that includes every possible

hypothesis?
• How does the size of this hypothesis space influence the ability of the algorithm to

generalize to unobserved instances?
• How does the size of the hypothesis space influence the number of training examples

that must be observed?
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Effect of incomplete hypothesis space 

Preceding algorithms work if target function is in H
Will generally not work if target function not in H

Consider following examples which represent target function
“sky = sunny or sky = cloudy”:

Sunny Warm Normal Strong Cool Change Y
Cloudy Warm Normal Strong Cool Change Y
Rainy Warm Normal Strong Cool Change N

If apply Candidate Elimination algorithm as before, end up with empty Version Space

After first two training example
S= ? Warm Normal Strong Cool Change

New hypothesis is overly general and it covers the third negative training example!

Our H does not include the appropriate c
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An Unbiased Learner
Incomplete hypothesis space

• If c not in H, then consider generalizing representation of H to contain c

• The size of the instance space X of days described by the six available attributes is 96. 
The number of distinct subsets that can be defined over a set X containing |X| elements 
(i.e., the size of the power set of X) is 2|X|

• Recall that there are 96 instances in EnjoySport; hence there are 296 possible hypotheses 
in full space H

• Can do this by using full propositional calculus with AND, OR, NOT

• Hence H defined only by conjunctions of attributes is biased (containing only 973 h’s)
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• Let us reformulate the Enjoysport learning task in an unbiased way by defining a new 
hypothesis space H' that can represent every subset of instances; that is, let H' correspond 
to the power set of X. 

• One way to define such an H' is to allow arbitrary disjunctions, conjunctions, and 
negations of our earlier hypotheses.

For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be described as

(Sunny, ?, ?, ?, ?, ?) V (Cloudy, ?, ?, ?, ?, ?)
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Definition: 

Consider a concept learning algorithm L for the set of instances X.

• Let c be an arbitrary concept defined over X

• Let Dc = {( x , c(x))} be an arbitrary set of training examples of c.

• Let L(xi, Dc) denote the classification assigned to the instance xi by L after training on the
data Dc.

• The inductive bias of L is any minimal set of assertions B such that for any target concept
c and corresponding training examples Dc

( xi  X ) [(B  Dc  xi) ├ L(xi, Dc)]
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Modelling inductive systems by
equivalent deductive systems.
The input-output behavior of the
CANDIDATE-ELIMINATION
algorithm using a hypothesis space H

is identical to that of a deductive
theorem prover utilizing the assertion
"H contains the target concept." This
assertion is therefore called the
inductive bias of the CANDIDATE-
ELIMINATION algorithm.
characterizing inductive systems
by their inductive bias allows
modelling them by their equivalent
deductive systems. This provides a
way to compare inductive systems
according to their policies for
generalizing beyond the observed
training data.
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