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MODULE 1 
 

INTRODUCTION 
 

Ever since computers were invented, we have wondered whether they might be made to learn. 

If we could understand how to program them to learn-to improve automatically with 

experience-the impact would be dramatic.  

 Imagine computers learning from medical records which treatments are most effective 

for new diseases 

 Houses learning from experience to optimize energy costs based on the particular usage 

patterns of their occupants.  

 Personal software assistants learning the evolving interests of their users in order to 

highlight especially relevant stories from the online morning newspaper 

 

A successful understanding of how to make computers learn would open up many new uses 

of computers and new levels of competence and customization 

 

Some successful applications of machine learning 

 Learning to recognize spoken words  

 Learning to drive an autonomous vehicle  

 Learning to classify new astronomical structures  

 Learning to play world-class backgammon 

 

Why is Machine Learning Important? 

 

 Some tasks cannot be defined well, except by examples (e.g., recognizing people). 

 Relationships and correlations can be hidden within large amounts of data. Machine 

Learning/Data Mining may be able to find these relationships. 

 Human designers often produce machines that do not work as well as desired in the 

environments in which they are used. 

 The amount of knowledge available about certain tasks might be too large for explicit 

encoding by humans (e.g., medical diagnostic). 

 Environments change over time. 

 New knowledge about tasks is constantly being discovered by humans. It may be 

difficult to continuously re-design systems “by hand”. 
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WELL-POSED LEARNING PROBLEMS 

 

Definition: A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

 

To have a well-defined learning problem, three features needs to be identified:  

1. The class of tasks 

2. The measure of performance to be improved 

3. The source of experience 

 

Examples  

1. Checkers game: A computer program that learns to play checkers might improve its 

performance as measured by its ability to win at the class of tasks involving playing 

checkers games, through experience obtained by playing games against itself. 

 

 
Fig: Checker game board 

A checkers learning problem: 

 Task T: playing checkers 

 Performance measure P: percent of games won against opponents 

 Training experience E: playing practice games against itself 

 

2. A handwriting recognition learning problem: 

 Task T: recognizing and classifying handwritten words within images 

 Performance measure P: percent of words correctly classified 

 Training experience E: a database of handwritten words with given 

classifications 

3. A robot driving learning problem: 

 Task T: driving on public four-lane highways using vision sensors 

 Performance measure P: average distance travelled before an error (as judged 

by human overseer) 

 Training experience E: a sequence of images and steering commands recorded 

while observing a human driver 
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DESIGNING A LEARNING SYSTEM 

 

The basic design issues and approaches to machine learning are illustrated by designing a 

program to learn to play checkers, with the goal of entering it in the world checkers 

tournament 

1. Choosing the Training Experience 

2. Choosing the Target Function 

3. Choosing a Representation for the Target Function 

4. Choosing a Function Approximation Algorithm 

1. Estimating training values 

2. Adjusting the weights 

5. The Final Design 

 

1. Choosing the Training Experience 

 

 The first design choice is to choose the type of training experience from which the 

system will learn.  

 The type of training experience available can have a significant impact on success or 

failure of the learner. 

 

There are three attributes which impact on success or failure of the learner 

 

1. Whether the training experience provides direct or indirect feedback regarding the 

choices made by the performance system. 

 

For example, in checkers game:  

In learning to play checkers, the system might learn from direct training examples 

consisting of individual checkers board states and the correct move for each.  

 

Indirect training examples consisting of the move sequences and final outcomes of 

various games played. The information about the correctness of specific moves early in 

the game must be inferred indirectly from the fact that the game was eventually won or 

lost.  

 

Here the learner faces an additional problem of credit assignment, or determining the 

degree to which each move in the sequence deserves credit or blame for the final 

outcome. Credit assignment can be a particularly difficult problem because the game 

can be lost even when early moves are optimal, if these are followed later by poor 

moves.  

Hence, learning from direct training feedback is typically easier than learning from 

indirect feedback. 



Machine Learning 15CS73 

 

4       Deepak D,  Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru 
 

2. The degree to which the learner controls the sequence of training examples 

 

For example, in checkers game:  

The learner might depends on the teacher to select informative board states and to 

provide the correct move for each.  

 

Alternatively, the learner might itself propose board states that it finds particularly 

confusing and ask the teacher for the correct move.  

 

The learner may have complete control over both the board states and (indirect) training 

classifications, as it does when it learns by playing against itself with no teacher present.  

 

3. How well it represents the distribution of examples over which the final system 

performance P must be measured 

 

For example, in checkers game:  

In checkers learning scenario, the performance metric P is the percent of games the 

system wins in the world tournament.  

 

If its training experience E consists only of games played against itself, there is a danger 

that this training experience might not be fully representative of the distribution of 

situations over which it will later be tested.  

It is necessary to learn from a distribution of examples that is different from those on 

which the final system will be evaluated. 

 

2. Choosing the Target Function 

 

The next design choice is to determine exactly what type of knowledge will be learned and 

how this will be used by the performance program. 

 

Let’s consider a checkers-playing program that can generate the legal moves from any board 

state.  

The program needs only to learn how to choose the best move from among these legal moves.  

We must learn to choose among the legal moves, the most obvious choice for the type of 

information to be learned is a program, or function, that chooses the best move for any given 

board state. 

 

1. Let ChooseMove  be the target function and the notation  is  

 

ChooseMove : B→ M 

which indicate that this function accepts as input any board from the set of legal board 

states B and produces as output some move from the set of legal moves M. 
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ChooseMove is a choice for the target function in checkers example, but this function 

will turn out to be very difficult to learn given the kind of indirect training experience 

available to our system 

 

2. An alternative target function is an evaluation function that assigns a numerical score 

to any given board state 

Let the target function V and the notation  

V : B   → R 

 

which denote that V maps any legal board state from the set B to some real value.  

Intend for this target function V to assign higher scores to better board states. If the 

system can successfully learn such a target function V, then it can easily use it to select 

the best move from any current board position.  

 

Let us define the target value V(b) for an arbitrary board state b in B, as follows: 

 If b is a final board state that is won, then V(b) = 100 

 If b is a final board state that is lost, then V(b) = -100 

 If b is a final board state that is drawn, then V(b) = 0 

 If b is a not a final state in the game, then V(b) = V(b' ),  

 

Where b' is the best final board state that can be achieved starting from b and playing optimally 

until the end of the game 

 

3. Choosing a Representation for the Target Function 

 

Let’s choose a simple representation - for any given board state, the function c will be 

calculated as a linear combination of the following board features: 

 

 xl: the number of black pieces on the board 

 x2: the number of red pieces on the board 

 x3: the number of black kings on the board 

 x4: the number of red kings on the board 

 x5: the number of black pieces threatened by red (i.e., which can be captured on red's 

next turn) 

 x6: the number of red pieces threatened by black 

 

Thus, learning program will represent as a linear function of the form 
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Where, 

 w0 through w6 are numerical coefficients, or weights, to be chosen by the learning 

algorithm.  

 Learned values for the weights w1 through w6 will determine the relative importance 

of the various board features in determining the value of the board 

 The weight w0 will provide an additive constant to the board value 

 

4. Choosing a Function Approximation Algorithm 

 

In order to learn the target function f we require a set of training examples, each describing a 

specific board state b and the training value Vtrain(b) for b.  

 

Each training example is an ordered pair of the form (b, Vtrain(b)).  

 

For instance, the following training example describes a board state b in which black has won 

the game (note x2 = 0 indicates that red has no remaining pieces) and for which the target 

function value Vtrain(b) is therefore +100. 

 

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 

 

Function Approximation Procedure 

 

1. Derive training examples from the indirect training experience available to the learner 

2. Adjusts the weights wi to best fit these training examples 

 

1. Estimating training values 

 

A simple approach for estimating training values for intermediate board states is to 

assign the training value of Vtrain(b) for any intermediate board state b to be 

V̂(Successor(b))  

 

Where , 

 V̂ is the learner's current approximation to V 

 Successor(b) denotes the next board state following b for which it is again the 

program's turn to move  

 

Rule for estimating training values 

 

Vtrain(b) ← V̂ (Successor(b)) 
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2. Adjusting the weights 

Specify the learning algorithm for choosing the weights wi to best fit the set of training 

examples {(b, Vtrain(b))} 

 A first step is to define what we mean by the bestfit to the training data.  

One common approach is to define the best hypothesis, or set of weights, as that which 

minimizes the squared error E between the training values and the values predicted by 

the hypothesis.  

 

Several algorithms are known for finding weights of a linear function that minimize E. 

One such algorithm is called the least mean squares, or LMS training rule. For each 

observed training example it adjusts the weights a small amount in the direction that 

reduces the error on this training example 

 

LMS weight update rule :- For each training example (b, Vtrain(b)) 

  Use the current weights to calculate V̂ (b) 

  For each weight wi, update it as 

 

wi ← wi + ƞ (Vtrain (b) - V̂(b)) xi 

 

Here ƞ is a small constant (e.g., 0.1) that moderates the size of the weight update. 

 

Working of weight update rule 

 

 When the error (Vtrain(b)- V̂(b)) is zero, no weights are changed.  

 When (Vtrain(b) - V̂(b)) is positive (i.e., when V̂(b) is too low), then each weight 

is increased in proportion to the value of its corresponding feature. This will raise 

the value of V̂(b), reducing the error. 

 If the value of some feature xi is zero, then its weight is not altered regardless of 

the error, so that the only weights updated are those whose features actually occur 

on the training example board. 
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5. The Final Design 

The final design of checkers learning system can be described by four distinct program modules 

that represent the central components in many learning systems 

 

 

 
 

1. The Performance System is the module that must solve the given performance task by 

using the learned target function(s). It takes an instance of a new problem (new game) 

as input and produces a trace of its solution (game history) as output. 

 

2. The Critic takes as input the history or trace of the game and produces as output a set 

of training examples of the target function 

 

3. The Generalizer takes as input the training examples and produces an output 

hypothesis that is its estimate of the target function. It generalizes from the specific 

training examples, hypothesizing a general function that covers these examples and 

other cases beyond the training examples. 

 

4. The Experiment Generator takes as input the current hypothesis and outputs a new 

problem (i.e., initial board state) for the Performance System to explore. Its role is to 

pick new practice problems that will maximize the learning rate of the overall system. 

 

The sequence of design choices made for the checkers program is summarized in below figure 
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PERSPECTIVES AND ISSUES IN MACHINE LEARNING 

 

Issues in Machine Learning 

The field of machine learning, and much of this book, is concerned with answering questions 

such as the following 

 What algorithms exist for learning general target functions from specific training 

examples? In what settings will particular algorithms converge to the desired function, 

given sufficient training data? Which algorithms perform best for which types of 

problems and representations? 

 How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character 

of the learner's hypothesis space? 
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 When and how can prior knowledge held by the learner guide the process of generalizing 

from examples? Can prior knowledge be helpful even when it is only approximately 

correct? 

 What is the best strategy for choosing a useful next training experience, and how does 

the choice of this strategy alter the complexity of the learning problem? 

 What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? 

Can this process itself be automated? 

 How can the learner automatically alter its representation to improve its ability to 

represent and learn the target function? 
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CONCEPT LEARNING 
 

 Learning involves acquiring general concepts from specific training examples. Example: 

People continually learn general concepts or categories such as "bird," "car," "situations in 

which I should study more in order to pass the exam," etc.  

 Each such concept can be viewed as describing some subset of objects or events defined 

over a larger set 

 Alternatively, each concept can be thought of as a Boolean-valued function defined over this 

larger set. (Example: A function defined over all animals, whose value is true for birds and 

false for other animals). 

 

Definition: Concept learning - Inferring a Boolean-valued function from training examples of 

its input and output  

 

 

A CONCEPT LEARNING TASK 

 

Consider the example task of learning the target concept "Days on which Aldo enjoys 

his favorite water sport”  

 

Example   Sky AirTemp  Humidity  Wind  Water  Forecast  EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

Table: Positive and negative training examples for the target concept EnjoySport. 

 

The task is to learn to predict the value of EnjoySport for an arbitrary day, based on the 

values of its other attributes? 

 

 

What hypothesis representation is provided to the learner?  

 

 Let’s consider a simple representation in which each hypothesis consists of a 

conjunction of constraints on the instance attributes.  

 Let each hypothesis be a vector of six constraints, specifying the values of the six 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast.  
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For each attribute, the hypothesis will either 

 Indicate by a "?' that any value is acceptable for this attribute, 

 Specify a single required value (e.g., Warm) for the attribute, or 

 Indicate by a "Φ" that no value is acceptable 

 

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive 

example (h(x) = 1). 

 

The hypothesis that PERSON enjoys his favorite sport only on cold days with high humidity 

is represented by the expression  

(?, Cold, High, ?, ?, ?) 

 

The most general hypothesis-that every day is a positive example-is represented by 

(?, ?, ?, ?, ?, ?) 

 

The most specific possible hypothesis-that no day is a positive example-is represented by 

(Φ, Φ, Φ, Φ, Φ, Φ) 

 

Notation 

 

 The set of items over which the concept is defined is called the set of instances, which is 

denoted by X. 

 

Example: X is the set of all possible days, each represented by the attributes: Sky, AirTemp, 

Humidity, Wind, Water, and Forecast 

 

 The concept or function to be learned is called the target concept, which is denoted by c.  

c can be any Boolean valued function defined over the instances X 

 

c: X→ {O, 1} 

 

Example: The target concept corresponds to the value of the attribute EnjoySport  

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 

 

 Instances for which c(x) = 1 are called positive examples, or members of the target concept.  

 Instances for which c(x) = 0 are called negative examples, or non-members of the target 

concept. 

 The ordered pair (x, c(x)) to describe the training example consisting of the instance x and 

its target concept value c(x). 

 D to denote the set of available training examples 
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 The symbol H to denote the set of all possible hypotheses that the learner may consider 

regarding the identity of the target concept. Each hypothesis h in H represents a Boolean-

valued function defined over X 

h: X→{O, 1} 

 

The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in X. 

 

 

 Given: 

 Instances X: Possible days, each described by the attributes 

 Sky (with possible values Sunny, Cloudy, and Rainy), 

 AirTemp (with values Warm and Cold), 

 Humidity (with values Normal and High), 

 Wind (with values Strong and Weak), 

 Water (with values Warm and Cool), 

 Forecast (with values Same and Change). 

 

 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the 

attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be 

"?" (any value is acceptable), “Φ”  (no value is acceptable), or a specific value. 

 

 Target concept c: EnjoySport : X → {0, l} 

 Training examples D: Positive and negative examples of the target function 

 

 Determine: 

 A hypothesis h in H such that h(x) = c(x) for all x in X. 

 

 

Table: The EnjoySport concept learning task. 

 

 

The inductive learning hypothesis 

 

Any hypothesis found to approximate the target function well over a sufficiently large set of 

training examples will also approximate the target function well over other unobserved 

examples.  

 

 

 

 

 

 

 



Machine Learning 15CS73 

 

14       Deepak D,  Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru 
 

 

CONCEPT LEARNING AS SEARCH 

 

 Concept learning can be viewed as the task of searching through a large space of 

hypotheses implicitly defined by the hypothesis representation.  

 The goal of this search is to find the hypothesis that best fits the training examples. 

 

Example:  

Consider the instances X and hypotheses H in the EnjoySport learning task. The attribute Sky 

has three possible values, and AirTemp, Humidity, Wind, Water, Forecast each have two 

possible values, the instance space X contains exactly  

3.2.2.2.2.2 = 96 distinct instances  

5.4.4.4.4.4 = 5120 syntactically distinct hypotheses within H. 

 

Every hypothesis containing one or more "Φ" symbols represents the empty set of instances; 

that is, it classifies every instance as negative. 

1 + (4.3.3.3.3.3) = 973. Semantically distinct hypotheses 

 

 

General-to-Specific Ordering of Hypotheses 

 

Consider the two hypotheses 

   h1 = (Sunny, ?, ?, Strong, ?, ?) 

   h2 = (Sunny, ?, ?, ?, ?, ?) 

 

 Consider the sets of instances that are classified positive by hl and by h2. 

 h2 imposes fewer constraints on the instance, it classifies more instances as positive. So, 

any instance classified positive by hl will also be classified positive by h2. Therefore, h2 

is more general than hl. 

 

Given hypotheses hj and hk, hj is more-general-than or- equal do hk if and only if any instance 

that satisfies hk also satisfies hi 

 

 

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is more general-

than-or-equal-to hk (written hj ≥ hk) if and only if 

 

( xX ) [(hk (x) = 1) → (hj (x) = 1)] 
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 In the figure, the box on the left represents the set X of all instances, the box on the right 

the set H of all hypotheses.  

 Each hypothesis corresponds to some subset of X-the subset of instances that it classifies 

positive.  

 The arrows connecting hypotheses represent the more - general -than relation, with the 

arrow pointing toward the less general hypothesis.  

 Note the subset of instances characterized by h2 subsumes the subset characterized by 

hl , hence h2 is more - general– than h1 

 

 

FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS 

 

FIND-S Algorithm 

 

1. Initialize h to the most specific hypothesis in H 

2. For each positive training instance x 

       For each attribute constraint a
i
 in h 

 If the constraint a
i
 is satisfied by x 

  Then do nothing 

 Else replace a
i
 in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h 
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To illustrate this algorithm, assume the learner is given the sequence of training examples 

from the EnjoySport task 

 

Example   Sky AirTemp  Humidity  Wind  Water  Forecast  EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

 

 The first step of FIND-S is to initialize h to the most specific hypothesis in H 

h - (Ø, Ø, Ø, Ø, Ø, Ø) 

 

 Consider the first training example 

x1 = <Sunny Warm Normal Strong Warm Same>, + 

 

Observing the first training example, it is clear that hypothesis h is too specific. None 

of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next 

more general constraint that fits the example 

h1 = <Sunny Warm Normal Strong Warm Same> 

 

 Consider the second training example 

x2 = <Sunny, Warm, High, Strong, Warm, Same>, + 

 

The second training example forces the algorithm to further generalize h, this time 

substituting a "?" in place of any attribute value in h that is not satisfied by the new 

example 

h2 = <Sunny Warm ? Strong Warm Same> 

 

 Consider the third training example 

x3 = <Rainy, Cold, High, Strong, Warm, Change>, - 

 

Upon encountering the third training the algorithm makes no change to h. The FIND-S 

algorithm simply ignores every negative example. 

h3 = < Sunny Warm ? Strong Warm Same> 

 

 Consider the fourth training example 

x4 =  <Sunny Warm High Strong Cool Change>, + 

 

The fourth example leads to a further generalization of h 

h4 = < Sunny Warm ? Strong ? ? > 
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The key property of the FIND-S algorithm 

 FIND-S is guaranteed to output the most specific hypothesis within H that is consistent 

with the positive training examples 

 FIND-S algorithm’s final hypothesis will also be consistent with the negative examples 

provided the correct target concept is contained in H, and provided the training examples 

are correct. 

 

Unanswered by FIND-S 

 

1. Has the learner converged to the correct target concept? 

2. Why prefer the most specific hypothesis? 

3. Are the training examples consistent? 

4. What if there are several maximally specific consistent hypotheses? 
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VERSION SPACES AND THE CANDIDATE-ELIMINATION ALGORITHM 

 

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the 

set of all hypotheses consistent with the training examples 

 

Representation 

 

Definition: consistent- A hypothesis h is consistent with a set of training examples D if and 

only if h(x) = c(x) for each example (x, c(x)) in D. 

 

Consistent (h, D)  ( x, c(x)  D) h(x) = c(x)) 

 

Note difference between definitions of consistent and satisfies 

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is 

a positive or negative example of the target concept.  

 An example x is said to consistent with hypothesis h iff h(x) = c(x) 

 

Definition: version space- The version space, denoted V S
H, D

 with respect to hypothesis space 

H and training examples D, is the subset of hypotheses from H consistent with the training 

examples in D 

V S
H, D 

{h  H | Consistent (h, D)} 

 

 

The LIST-THEN-ELIMINATION algorithm 

 

The LIST-THEN-ELIMINATE algorithm first initializes the version space to contain all 

hypotheses in H and then eliminates any hypothesis found inconsistent with any training 

example. 

 

1. VersionSpace c a list containing every hypothesis in H 

2. For each training example, (x, c(x)) 

 remove from VersionSpace any hypothesis h for which h(x) ≠ c(x) 

3. Output the list of hypotheses in VersionSpace 

 

The LIST-THEN-ELIMINATE Algorithm 

 

 

 List-Then-Eliminate works in principle, so long as version space is finite. 

 However, since it requires exhaustive enumeration of all hypotheses in practice it is not 

feasible. 
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A More Compact Representation for Version Spaces 

 

The version space is represented by its most general and least general members. These 

members form general and specific boundary sets that delimit the version space within the 

partially ordered hypothesis space. 

 

Definition: The general boundary G, with respect to hypothesis space H and training data D, 

is the set of maximally general members of H consistent with D 

 

G {g  H | Consistent (g, D)(g'  H)[(g' 
g
 g)  Consistent(g', D)]} 

 

Definition: The specific boundary S, with respect to hypothesis space H and training data D, 

is the set of minimally general (i.e., maximally specific) members of H consistent with D. 

  

S {s  H | Consistent (s, D)(s'  H)[(s 
g
s')  Consistent(s', D)]} 

 

Theorem: Version Space representation theorem 

Theorem: Let X be an arbitrary set of instances and Let H be a set of Boolean-valued 

hypotheses defined over X. Let c: X →{O, 1} be an arbitrary target concept defined over X, 

and let D be an arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S 

and G are well defined, 

VS
H,D

={ h  H | (s  S ) (g  G ) ( g 
g
 h 

g
 s )} 

To Prove:  

1. Every h satisfying the right hand side of the above expression is in VS 
H, D

 

2. Every member of VS 
H, D 

satisfies the right-hand side of the expression 

 

Sketch of proof: 

1. let g, h, s be arbitrary members of G, H, S respectively with g 
g
 h 

g
 s 

 By the definition of S, s must be satisfied by all positive examples in D. Because h 
g
 s, 

h must also be satisfied by all positive examples in D.  

 By the definition of G, g cannot be satisfied by any negative example in D, and because 

g 
g
 h h cannot be satisfied by any negative example in D. Because h is satisfied by all 

positive examples in D and by no negative examples in D, h is consistent with D, and 

therefore h is a member of VS
H,D

.  

2. It can be proven by assuming some h in VS
H,D

,that does not satisfy the right-hand side 

of the expression, then showing that this leads to an inconsistency 
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CANDIDATE-ELIMINATION Learning Algorithm 

 

The CANDIDATE-ELIMINTION algorithm computes the version space containing all 

hypotheses from H that are consistent with an observed sequence of training examples. 

 

 

Initialize G to the set of maximally general hypotheses in H 

Initialize S to the set of maximally specific hypotheses in H 

For each training example d, do 

• If d is a positive example 

• Remove from G any hypothesis inconsistent with d 

• For each hypothesis s in S that is not consistent with d 

• Remove s from S 

• Add to S all minimal generalizations h of s such that 

• h is consistent with d, and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 

  

• If d is a negative example 

• Remove from S any hypothesis inconsistent with d 

• For each hypothesis g in G that is not consistent with d 

• Remove g from G 

• Add to G all minimal specializations h of g such that 

• h is consistent with d, and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 

 

CANDIDATE- ELIMINTION algorithm using version spaces 

 

 

 

An Illustrative Example 

 

 

Example   Sky AirTemp  Humidity  Wind  Water  Forecast  EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 
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CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of 

all hypotheses in H;  

 

Initializing the G boundary set to contain the most general hypothesis in H 

G0 ?,  ?,  ?,  ?,  ?,  ? 

 

Initializing the S boundary set to contain the most specific (least general) hypothesis 

S0 , , , , ,  

 

 When the first training example is presented, the CANDIDATE-ELIMINTION algorithm 

checks the S boundary and finds that it is overly specific and it fails to cover the positive 

example.  

 The boundary is therefore revised by moving it to the least more general hypothesis that 

covers this new example 

 No update of the G boundary is needed in response to this training example because Go 

correctly covers this example 

 

 
 

 When the second training example is observed, it has a similar effect of generalizing S 

further to S2, leaving G again unchanged i.e., G2 = G1 = G0 
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 Consider the third training example. This negative example reveals that the G boundary 

of the version space is overly general, that is, the hypothesis in G incorrectly predicts 

that this new example is a positive example. 

 The hypothesis in the G boundary must therefore be specialized until it correctly 

classifies this new negative example 

 

 
 

Given that there are six attributes that could be specified to specialize G2, why are there only 

three new hypotheses in G3?  

For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 

that correctly labels the new example as a negative example, but it is not included in G3. 

The reason this hypothesis is excluded is that it is inconsistent with the previously 

encountered positive examples 

 

 Consider the fourth training example.  
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 This positive example further generalizes the S boundary of the version space. It also 

results in removing one member of the G boundary, because this member fails to 

cover the new positive example 

 

 

After processing these four examples, the boundary sets S4 and G4 delimit the version space 

of all hypotheses consistent with the set of incrementally observed training examples. 
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INDUCTIVE BIAS 

 

The fundamental questions for inductive inference 

 

1. What if the target concept is not contained in the hypothesis space?  

2. Can we avoid this difficulty by using a hypothesis space that includes every possible 

hypothesis?  

3. How does the size of this hypothesis space influence the ability of the algorithm to 

generalize to unobserved instances?  

4. How does the size of the hypothesis space influence the number of training examples 

that must be observed? 

 

These fundamental questions are examined in the context of the CANDIDATE-

ELIMINTION algorithm 

 

 

A Biased Hypothesis Space 

 

 Suppose the target concept is not contained in the hypothesis space H, then obvious 

solution is to enrich the hypothesis space to include every possible hypothesis. 

 Consider the EnjoySport example in which the hypothesis space is restricted to include 

only conjunctions of attribute values. Because of this restriction, the hypothesis space is 

unable to represent even simple disjunctive target concepts such as  

"Sky = Sunny or Sky = Cloudy." 

 The following three training examples of disjunctive hypothesis, the algorithm would 

find that there are zero hypotheses in the version space 

  

  Sunny Warm Normal Strong Cool Change   Y 

  Cloudy Warm Normal Strong Cool Change   Y 

  Rainy Warm Normal Strong Cool Change   N 

 

 If Candidate Elimination algorithm is applied, then it end up with empty Version Space. 

After first two training example 

S= ? Warm Normal Strong Cool Change 

 

 This new hypothesis is overly general and it incorrectly covers the third negative 

training example! So H does not include the appropriate c.  

 In this case, a more expressive hypothesis space is required. 
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An Unbiased Learner 

 

 The solution to the problem of assuring that the target concept is in the hypothesis space H 

is to provide a hypothesis space capable of representing every teachable concept that is 

representing every possible subset of the instances X.  

 The set of all subsets of a set X is called the power set of X 

 

 In the EnjoySport learning task the size of the instance space X of days described by 

the six attributes is 96 instances.  

 Thus, there are 296 distinct target concepts that could be defined over this instance space 

and learner might be called upon to learn. 

 The conjunctive hypothesis space is able to represent only 973 of these - a biased 

hypothesis space indeed 

 

 Let us reformulate the EnjoySport learning task in an unbiased way by defining a new 

hypothesis space H' that can represent every subset of instances 

 The target concept "Sky = Sunny or Sky = Cloudy" could then be described as 

 

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?) 

 

 

The Futility of Bias-Free Learning 

 

Inductive learning requires some form of prior assumptions, or inductive bias 

 

Definition:  

Consider a concept learning algorithm L for the set of instances X.  
 Let c be an arbitrary concept defined over X 

 Let D
c
 = {(x , c(x))} be an arbitrary set of training examples of c.  

 Let L (x
i 
, D

c
) denote the classification assigned to the instance x

i
 by L after training on 

the data D
c
.  

 The inductive bias of L is any minimal set of assertions B such that for any target concept 
c and corresponding training examples D

c
 

 ( x
i
  X ) [(B  D

c
  x

i
) ├ L (x

i
, D

c 
)] 
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The below figure explains 

 Modelling inductive systems by equivalent deductive systems.  

 The input-output behavior of the CANDIDATE-ELIMINATION algorithm using a 

hypothesis space H is identical to that of a deductive theorem prover utilizing the 

assertion "H contains the target concept." This assertion is therefore called the inductive 

bias of the CANDIDATE-ELIMINATION algorithm.  

 Characterizing inductive systems by their inductive bias allows modelling them by their 

equivalent deductive systems. This provides a way to compare inductive systems 

according to their policies for generalizing beyond the observed training data. 

 

 

 
 

 

 


