
Machine Learning Laboratory 15CSL76

1 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored

as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Bayes’ Theorem is stated as:

Where,

P(h|D) is the probability of hypothesis h given the data D. This is called the posterior

probability.

P(D|h) is the probability of data d given that the hypothesis h was true.

P(h) is the probability of hypothesis h being true. This is called the prior probability of h.

P(D) is the probability of the data. This is called the prior probability of D

After calculating the posterior probability for a number of different hypotheses h, and is

interested in finding the most probable hypothesis h ∈ H given the observed data D. Any such

maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis.

Bayes theorem to calculate the posterior probability of each candidate hypothesis is hMAP is a

MAP hypothesis provided

(Ignoring P(D) since it is a constant)

Machine Learning Laboratory 15CSL76

2 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

Gaussian Naive Bayes

A Gaussian Naive Bayes algorithm is a special type of Naïve Bayes algorithm. It’s specifically

used when the features have continuous values. It’s also assumed that all the features are

following a Gaussian distribution i.e., normal distribution

Representation for Gaussian Naive Bayes

We calculate the probabilities for input values for each class using a frequency. With real-

valued inputs, we can calculate the mean and standard deviation of input values (x) for each

class to summarize the distribution.

This means that in addition to the probabilities for each class, we must also store the mean and

standard deviations for each input variable for each class.

Gaussian Naive Bayes Model from Data

The probability density function for the normal distribution is defined by two parameters (mean

and standard deviation) and calculating the mean and standard deviation values of each input

variable (x) for each class value.

Example: Refer the link

http://chem-eng.utoronto.ca/~datamining/dmc/naive_bayesian.htm

Machine Learning Laboratory 15CSL76

3 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

Examples:

 The data set used in this program is the Pima Indians Diabetes problem.

 This data set is comprised of 768 observations of medical details for Pima Indians

patents. The records describe instantaneous measurements taken from the patient such

as their age, the number of times pregnant and blood workup. All patients are women

aged 21 or older. All attributes are numeric, and their units vary from attribute to

attribute.

 The attributes are Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin,

BMI, DiabeticPedigreeFunction, Age, Outcome

 Each record has a class value that indicates whether the patient suffered an onset of

diabetes within 5 years of when the measurements were taken (1) or not (0)

Sample Examples:

Examples Pregnancies Glucose BloodPressure SkinThickness Insulin BMI Diabetic

Pedigree

Function

Age Outcome

1 6 148 72 35 0 33.6 0.627 50 1

2 1 85 66 29 0 26.6 0.351 31 0

3 8 183 64 0 0 23.3 0.672 32 1

4 1 89 66 23 94 28.1 0.167 21 0

5 0 137 40 35 168 43.1 2.288 33 1
6 5 116 74 0 0 25.6 0.201 30 0

7 3 78 50 32 88 31 0.248 26 1
8 10 115 0 0 0 35.3 0.134 29 0
9 2 197 70 45 543 30.5 0.158 53 1

10 8 125 96 0 0 0 0.232 54 1

Machine Learning Laboratory 15CSL76

4 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

Program:

import csv

import random

import math

def loadcsv(filename):

 lines = csv.reader(open(filename, "r"));

 dataset = list(lines)

 for i in range(len(dataset)):

 #converting strings into numbers for processing

 dataset[i] = [float(x) for x in dataset[i]]

 return dataset

def splitdataset(dataset, splitratio):

 #67% training size

 trainsize = int(len(dataset) * splitratio);

 trainset = []

 copy = list(dataset);

 while len(trainset) < trainsize:

#generate indices for the dataset list randomly to pick ele for

training data

 index = random.randrange(len(copy));

 trainset.append(copy.pop(index))

 return [trainset, copy]

def separatebyclass(dataset):

 separated = {} #dictionary of classes 1 and 0

#creates a dictionary of classes 1 and 0 where the values are

#the instances belonging to each class

 for i in range(len(dataset)):

 vector = dataset[i]

 if (vector[-1] not in separated):

 separated[vector[-1]] = []

 separated[vector[-1]].append(vector)

 return separated

def mean(numbers):

 return sum(numbers)/float(len(numbers))

def stdev(numbers):

 avg = mean(numbers)

 variance = sum([pow(x-avg,2) for x in

numbers])/float(len(numbers)-1)

 return math.sqrt(variance)

Machine Learning Laboratory 15CSL76

5 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

def summarize(dataset): #creates a dictionary of classes

 summaries = [(mean(attribute), stdev(attribute)) for

attribute in zip(*dataset)];

 del summaries[-1] #excluding labels +ve or -ve

 return summaries

def summarizebyclass(dataset):

 separated = separatebyclass(dataset);

 #print(separated)

 summaries = {}

 for classvalue, instances in separated.items():

#for key,value in dic.items()

#summaries is a dic of tuples(mean,std) for each class value

 summaries[classvalue] = summarize(instances)

#summarize is used to cal to mean and std

 return summaries

def calculateprobability(x, mean, stdev):

 exponent = math.exp(-(math.pow(x-mean,2)/

(2*math.pow(stdev,2))))

 return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateclassprobabilities(summaries, inputvector):

probabilities contains the all prob of all class of test data

probabilities = {}

 for classvalue, classsummaries in summaries.items():

#class and attribute information as mean and sd

 probabilities[classvalue] = 1

 for i in range(len(classsummaries)):

 mean, stdev = classsummaries[i] #take mean and

sd of every attribute for class 0 and 1 seperaely

 x = inputvector[i] #testvector's first attribute

 probabilities[classvalue] *=

calculateprobability(x, mean, stdev);#use normal dist

 return probabilities

def predict(summaries, inputvector): #training and test data

is passed

 probabilities = calculateclassprobabilities(summaries,

inputvector)

 bestLabel, bestProb = None, -1

 for classvalue, probability in probabilities.items():

#assigns that class which has the highest prob

 if bestLabel is None or probability > bestProb:

 bestProb = probability

 bestLabel = classvalue

 return bestLabel

Machine Learning Laboratory 15CSL76

6 Deepak D. Assistant Professor, Dept. of CS&E, Canara Engg. College

def getpredictions(summaries, testset):

 predictions = []

 for i in range(len(testset)):

 result = predict(summaries, testset[i])

 predictions.append(result)

 return predictions

def getaccuracy(testset, predictions):

 correct = 0

 for i in range(len(testset)):

 if testset[i][-1] == predictions[i]:

 correct += 1

 return (correct/float(len(testset))) * 100.0

def main():

 filename = 'naivedata.csv'

 splitratio = 0.67

 dataset = loadcsv(filename);

 trainingset, testset = splitdataset(dataset, splitratio)

 print('Split {0} rows into train={1} and test={2}

rows'.format(len(dataset), len(trainingset), len(testset)))

 # prepare model

 summaries = summarizebyclass(trainingset);

 #print(summaries)

 # test model

 predictions = getpredictions(summaries, testset) #find the

predictions of test data with the training data

 accuracy = getaccuracy(testset, predictions)

 print('Accuracy of the classifier is :

{0}%'.format(accuracy))

main()

Output:

Split 768 rows into train=514 and test=254 rows

Accuracy of the classifier is : 71.65354330708661%

