
Machine Learning 15CS73

1 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

MODULE 3

ARTIFICIAL NEURAL NETWORKS

INTRODUCTION

Artificial neural networks (ANNs) provide a general, practical method for learning real-valued,

discrete-valued, and vector-valued target functions.

Biological Motivation

 The study of artificial neural networks (ANNs) has been inspired by the observation that

biological learning systems are built of very complex webs of interconnected Neurons

 Human information processing system consists of brain neuron: basic building block

cell that communicates information to and from various parts of body

Facts of Human Neurobiology

 Number of neurons ~ 1011

 Connection per neuron ~ 10 4 – 5

 Neuron switching time ~ 0.001 second or 10 -3

 Scene recognition time ~ 0.1 second

 100 inference steps doesn’t seem like enough

 Highly parallel computation based on distributed representation

Properties of Neural Networks

 Many neuron-like threshold switching units

 Many weighted interconnections among units

 Highly parallel, distributed process

 Emphasis on tuning weights automatically

 Input is a high-dimensional discrete or real-valued (e.g, sensor input)

Machine Learning 15CS73

2 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

NEURAL NETWORK REPRESENTATIONS

 A prototypical example of ANN learning is provided by Pomerleau's system ALVINN,

which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on

public highways

 The input to the neural network is a 30x32 grid of pixel intensities obtained from a

forward-pointed camera mounted on the vehicle.

 The network output is the direction in which the vehicle is steered

Figure: Neural network learning to steer an autonomous vehicle.

Machine Learning 15CS73

3 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Figure illustrates the neural network representation.

 The network is shown on the left side of the figure, with the input camera image depicted

below it.

 Each node (i.e., circle) in the network diagram corresponds to the output of a single

network unit, and the lines entering the node from below are its inputs.

 There are four units that receive inputs directly from all of the 30 x 32 pixels in the

image. These are called "hidden" units because their output is available only within the

network and is not available as part of the global network output. Each of these four

hidden units computes a single real-valued output based on a weighted combination of

its 960 inputs

 These hidden unit outputs are then used as inputs to a second layer of 30 "output" units.

 Each output unit corresponds to a particular steering direction, and the output values of

these units determine which steering direction is recommended most strongly.

 The diagrams on the right side of the figure depict the learned weight values associated

with one of the four hidden units in this ANN.

 The large matrix of black and white boxes on the lower right depicts the weights from

the 30 x 32 pixel inputs into the hidden unit. Here, a white box indicates a positive

weight, a black box a negative weight, and the size of the box indicates the weight

magnitude.

 The smaller rectangular diagram directly above the large matrix shows the weights from

this hidden unit to each of the 30 output units.

APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING

ANN learning is well-suited to problems in which the training data corresponds to noisy,

complex sensor data, such as inputs from cameras and microphones.

ANN is appropriate for problems with the following characteristics:

1. Instances are represented by many attribute-value pairs.

2. The target function output may be discrete-valued, real-valued, or a vector of several

real- or discrete-valued attributes.

3. The training examples may contain errors.

4. Long training times are acceptable.

5. Fast evaluation of the learned target function may be required

6. The ability of humans to understand the learned target function is not important

Machine Learning 15CS73

4 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

PERCEPTRON

 One type of ANN system is based on a unit called a perceptron. Perceptron is a single

layer neural network.

Figure: A perceptron

 A perceptron takes a vector of real-valued inputs, calculates a linear combination of

these inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise.

 Given inputs x through x, the output O(x1, . . . , xn) computed by the perceptron is

 Where, each wi is a real-valued constant, or weight, that determines the contribution of

input xi to the perceptron output.

 -w0 is a threshold that the weighted combination of inputs w1x1 + . . . + wnxn must surpass

in order for the perceptron to output a 1.

Sometimes, the perceptron function is written as,

Learning a perceptron involves choosing values for the weights w0 , . . . , wn . Therefore, the

space H of candidate hypotheses considered in perceptron learning is the set of all possible

real-valued weight vectors

Machine Learning 15CS73

5 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Representational Power of Perceptrons

 The perceptron can be viewed as representing a hyperplane decision surface in the n-

dimensional space of instances (i.e., points)

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and outputs

a -1 for instances lying on the other side, as illustrated in below figure

Perceptrons can represent all of the primitive Boolean functions AND, OR, NAND (~ AND),

and NOR (~OR)

Some Boolean functions cannot be represented by a single perceptron, such as the XOR

function whose value is 1 if and only if x1 ≠ x2

Example: Representation of AND functions

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0.

This is not greater than the threshold of 1, so the output = 0.

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6.

This is not greater than the threshold, so the output = 0.

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6.

This is not greater than the threshold, so the output = 0.

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2.

This exceeds the threshold, so the output = 1.

Machine Learning 15CS73

6 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Drawback of perceptron

 The perceptron rule finds a successful weight vector when the training examples are

linearly separable, it can fail to converge if the examples are not linearly separable

The Perceptron Training Rule

The learning problem is to determine a weight vector that causes the perceptron to produce the

correct + 1 or - 1 output for each of the given training examples.

To learn an acceptable weight vector

 Begin with random weights, then iteratively apply the perceptron to each training

example, modifying the perceptron weights whenever it misclassifies an example.

 This process is repeated, iterating through the training examples as many times as

needed until the perceptron classifies all training examples correctly.

 Weights are modified at each step according to the perceptron training rule, which

revises the weight wi associated with input xi according to the rule.

 The role of the learning rate is to moderate the degree to which weights are changed at

each step. It is usually set to some small value (e.g., 0.1) and is sometimes made to decay

as the number of weight-tuning iterations increases

Drawback:

The perceptron rule finds a successful weight vector when the training examples are linearly

separable, it can fail to converge if the examples are not linearly separable.

Machine Learning 15CS73

7 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Gradient Descent and the Delta Rule

 If the training examples are not linearly separable, the delta rule converges toward a

best-fit approximation to the target concept.

 The key idea behind the delta rule is to use gradient descent to search the hypothesis

space of possible weight vectors to find the weights that best fit the training examples.

To understand the delta training rule, consider the task of training an unthresholded perceptron.

That is, a linear unit for which the output O is given by

To derive a weight learning rule for linear units, specify a measure for the training error of a

hypothesis (weight vector), relative to the training examples.

Where,

 D is the set of training examples,

 td is the target output for training example d,

 od is the output of the linear unit for training example d

 E (w ⃗⃗⃗⃗) is simply half the squared difference between the target output td and the linear

unit output od, summed over all training examples.

Visualizing the Hypothesis Space

 To understand the gradient descent algorithm, it is helpful to visualize the entire

hypothesis space of possible weight vectors and their associated E values as shown in

below figure.

 Here the axes w0 and wl represent possible values for the two weights of a simple linear

unit. The w0, wl plane therefore represents the entire hypothesis space.

 The vertical axis indicates the error E relative to some fixed set of training examples.

 The arrow shows the negated gradient at one particular point, indicating the direction in

the w0, wl plane producing steepest descent along the error surface.

 The error surface shown in the figure thus summarizes the desirability of every weight

vector in the hypothesis space

Machine Learning 15CS73

8 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Given the way in which we chose to define E, for linear units this error surface must

always be parabolic with a single global minimum.

Gradient descent search determines a weight vector that minimizes E by starting with an

arbitrary initial weight vector, then repeatedly modifying it in small steps.

At each step, the weight vector is altered in the direction that produces the steepest descent

along the error surface depicted in above figure. This process continues until the global

minimum error is reached.

Derivation of the Gradient Descent Rule

How to calculate the direction of steepest descent along the error surface?

The direction of steepest can be found by computing the derivative of E with respect to each

component of the vector w ⃗⃗⃗⃗ . This vector derivative is called the gradient of E with respect to

w ⃗⃗⃗⃗ , written as

Machine Learning 15CS73

9 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The gradient specifies the direction of steepest increase of E, the training rule for

gradient descent is

 Here η is a positive constant called the learning rate, which determines the step

size in the gradient descent search.

 The negative sign is present because we want to move the weight vector in the

direction that decreases E.

This training rule can also be written in its component form

Calculate the gradient at each step. The vector of
𝜕𝐸

𝜕𝑤𝑖
 derivatives that form the

gradient can be obtained by differentiating E from Equation (2), as

Machine Learning 15CS73

10 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

GRADIENT DESCENT algorithm for training a linear unit

To summarize, the gradient descent algorithm for training linear units is as follows:

 Pick an initial random weight vector.

 Apply the linear unit to all training examples, then compute Δwi for each weight

according to Equation (7).

 Update each weight wi by adding Δwi, then repeat this process

Issues in Gradient Descent Algorithm

Gradient descent is an important general paradigm for learning. It is a strategy for searching

through a large or infinite hypothesis space that can be applied whenever

1. The hypothesis space contains continuously parameterized hypotheses

2. The error can be differentiated with respect to these hypothesis parameters

The key practical difficulties in applying gradient descent are

1. Converging to a local minimum can sometimes be quite slow

2. If there are multiple local minima in the error surface, then there is no guarantee that

the procedure will find the global minimum

Machine Learning 15CS73

11 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Stochastic Approximation to Gradient Descent

 The gradient descent training rule presented in Equation (7) computes weight updates

after summing over all the training examples in D

 The idea behind stochastic gradient descent is to approximate this gradient descent

search by updating weights incrementally, following the calculation of the error for

each individual example

∆wi = η (t – o) xi

 where t, o, and xi are the target value, unit output, and ith input for the training example

in question

One way to view this stochastic gradient descent is to consider a distinct error function

Ed(w ⃗⃗⃗⃗) for each individual training example d as follows

 Where, td and od are the target value and the unit output value for training example d.

 Stochastic gradient descent iterates over the training examples d in D, at each iteration

altering the weights according to the gradient with respect to Ed(w ⃗⃗⃗⃗)

 The sequence of these weight updates, when iterated over all training examples,

provides a reasonable approximation to descending the gradient with respect to our

original error function Ed(w ⃗⃗⃗⃗)

 By making the value of η sufficiently small, stochastic gradient descent can be made to

approximate true gradient descent arbitrarily closely

Machine Learning 15CS73

12 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

The key differences between standard gradient descent and stochastic gradient descent are

 In standard gradient descent, the error is summed over all examples before updating

weights, whereas in stochastic gradient descent weights are updated upon examining

each training example.

 Summing over multiple examples in standard gradient descent requires more

computation per weight update step. On the other hand, because it uses the true gradient,

standard gradient descent is often used with a larger step size per weight update than

stochastic gradient descent.

 In cases where there are multiple local minima with respect to stochastic gradient

descent can sometimes avoid falling into these local minima because it uses the various

∇E
d
(w ⃗⃗⃗⃗) rather than ∇ E(w ⃗⃗⃗⃗) to guide its search

MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM

Multilayer networks learned by the BACKPROPAGATION algorithm are capable of

expressing a rich variety of nonlinear decision surfaces.

Consider the example:

 Here the speech recognition task involves distinguishing among 10 possible vowels, all

spoken in the context of "h_d" (i.e., "hid," "had," "head," "hood," etc.).

 The network input consists of two parameters, F1 and F2, obtained from a spectral

analysis of the sound. The 10 network outputs correspond to the 10 possible vowel

sounds. The network prediction is the output whose value is highest.

 The plot on the right illustrates the highly nonlinear decision surface represented by the

learned network. Points shown on the plot are test examples distinct from the examples

used to train the network.

Machine Learning 15CS73

13 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

A Differentiable Threshold Unit (Sigmoid unit)

 Sigmoid unit-a unit very much like a perceptron, but based on a smoothed, differentiable

threshold function.

 The sigmoid unit first computes a linear combination of its inputs, then applies a

threshold to the result and the threshold output is a continuous function of its input.

 More precisely, the sigmoid unit computes its output O as

σ is the sigmoid function

The BACKPROPAGATION Algorithm

 The BACKPROPAGATION Algorithm learns the weights for a multilayer network,

given a network with a fixed set of units and interconnections. It employs gradient

descent to attempt to minimize the squared error between the network output values and

the target values for these outputs.

 In BACKPROPAGATION algorithm, we consider networks with multiple output units

rather than single units as before, so we redefine E to sum the errors over all of the

network output units.

Machine Learning 15CS73

14 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

where,

 outputs - is the set of output units in the network

 tkd and Okd - the target and output values associated with the kth output unit

 d - training example

Algorithm:

BACKPROPAGATION (training_example, ƞ, nin, nout, nhidden)

Each training example is a pair of the form (𝑥,⃗⃗⃗ 𝑡), where (𝑥) is the vector of network

input values, (𝑡) and is the vector of target network output values.

ƞ is the learning rate (e.g., .05). ni, is the number of network inputs, nhidden the number

of units in the hidden layer, and nout the number of output units.

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is

denoted wji

 Create a feed-forward network with ni inputs, nhidden hidden units, and nout output

units.

 Initialize all network weights to small random numbers

 Until the termination condition is met, Do

 For each (𝑥,⃗⃗⃗ 𝑡), in training examples, Do

 Propagate the input forward through the network:

1. Input the instance 𝑥,⃗⃗⃗ to the network and compute the output ou of every

unit u in the network.

Propagate the errors backward through the network:

Machine Learning 15CS73

15 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Adding Momentum

Because BACKPROPAGATION is such a widely used algorithm, many variations have been

developed. The most common is to alter the weight-update rule the equation below

by making the weight update on the nth iteration depend partially on the update that occurred

during the (n - 1)th iteration, as follows:

Learning in arbitrary acyclic networks

 BACKPROPAGATION algorithm given there easily generalizes to feedforward

networks of arbitrary depth. The weight update rule is retained, and the only change is

to the procedure for computing δ values.

 In general, the δ, value for a unit r in layer m is computed from the δ values at the next

deeper layer m + 1 according to

 The rule for calculating δ for any internal unit

Where, Downstream(r) is the set of units immediately downstream from unit r in the network:

that is, all units whose inputs include the output of unit r

Derivation of the BACKPROPAGATION Rule

 Deriving the stochastic gradient descent rule: Stochastic gradient descent involves

iterating through the training examples one at a time, for each training example d

descending the gradient of the error Ed with respect to this single example

 For each training example d every weight wji is updated by adding to it Δwji

Machine Learning 15CS73

16 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Here outputs is the set of output units in the network, tk is the target value of unit k for training

example d, and ok is the output of unit k given training example d.

The derivation of the stochastic gradient descent rule is conceptually straightforward, but

requires keeping track of a number of subscripts and variables

 xji = the ith input to unit j

 wji = the weight associated with the ith input to unit j

 netj = Σi wjixji (the weighted sum of inputs for unit j)

 oj = the output computed by unit j

 tj = the target output for unit j

 σ = the sigmoid function

 outputs = the set of units in the final layer of the network

 Downstream(j) = the set of units whose immediate inputs include the output of unit j

Machine Learning 15CS73

17 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Consider two cases: The case where unit j is an output unit for the network, and the case where

j is an internal unit (hidden unit).

Case 1: Training Rule for Output Unit Weights.

wji can influence the rest of the network only through netj , netj can influence the network only

through oj. Therefore, we can invoke the chain rule again to write

Machine Learning 15CS73

18 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

Case 2: Training Rule for Hidden Unit Weights.

 In the case where j is an internal, or hidden unit in the network, the derivation of the

training rule for wji must take into account the indirect ways in which wji can influence

the network outputs and hence Ed.

 For this reason, we will find it useful to refer to the set of all units immediately

downstream of unit j in the network and denoted this set of units by Downstream(j).

 netj can influence the network outputs only through the units in Downstream(j).

Therefore, we can write

Machine Learning 15CS73

19 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

REMARKS ON THE BACKPROPAGATION ALGORITHM

1. Convergence and Local Minima

 The BACKPROPAGATION multilayer networks is only guaranteed to converge

toward some local minimum in E and not necessarily to the global minimum error.

 Despite the lack of assured convergence to the global minimum error,

BACKPROPAGATION is a highly effective function approximation method in

practice.

 Local minima can be gained by considering the manner in which network weights

evolve as the number of training iterations increases.

Common heuristics to attempt to alleviate the problem of local minima include:

1. Add a momentum term to the weight-update rule. Momentum can sometimes carry the

gradient descent procedure through narrow local minima

2. Use stochastic gradient descent rather than true gradient descent

3. Train multiple networks using the same data, but initializing each network with different

random weights

2. Representational Power of Feedforward Networks

What set of functions can be represented by feed-forward networks?

The answer depends on the width and depth of the networks. There are three quite general

results are known about which function classes can be described by which types of

Networks

1. Boolean functions – Every boolean function can be represented exactly by some

network with two layers of units, although the number of hidden units required grows

exponentially in the worst case with the number of network inputs

2. Continuous functions – Every bounded continuous function can be approximated with

arbitrarily small error by a network with two layers of units

3. Arbitrary functions – Any function can be approximated to arbitrary accuracy by a

network with three layers of units.

3. Hypothesis Space Search and Inductive Bias

 Hypothesis space is the n-dimensional Euclidean space of the n network weights and

hypothesis space is continuous.

Machine Learning 15CS73

20 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 As it is continuous, E is differentiable with respect to the continuous parameters of the

hypothesis, results in a well-defined error gradient that provides a very useful structure

for organizing the search for the best hypothesis.

 It is difficult to characterize precisely the inductive bias of BACKPROPAGATION

algorithm, because it depends on the interplay between the gradient descent search and

the way in which the weight space spans the space of representable functions. However,

one can roughly characterize it as smooth interpolation between data points.

4. Hidden Layer Representations

BACKPROPAGATION can define new hidden layer features that are not explicit in the input

representation, but which capture properties of the input instances that are most relevant to

learning the target function.

Consider example, the network shown in below Figure

Machine Learning 15CS73

21 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Consider training the network shown in Figure to learn the simple target function f (x)

= x, where x is a vector containing seven 0's and a single 1.

 The network must learn to reproduce the eight inputs at the corresponding eight output

units. Although this is a simple function, the network in this case is constrained to use

only three hidden units. Therefore, the essential information from all eight input units

must be captured by the three learned hidden units.

 When BACKPROPAGATION applied to this task, using each of the eight possible

vectors as training examples, it successfully learns the target function. By examining

the hidden unit values generated by the learned network for each of the eight possible

input vectors, it is easy to see that the learned encoding is similar to the familiar standard

binary encoding of eight values using three bits (e.g., 000,001,010,. . . , 111). The exact

values of the hidden units for one typical run of shown in Figure.

 This ability of multilayer networks to automatically discover useful representations at

the hidden layers is a key feature of ANN learning

5. Generalization, Overfitting, and Stopping Criterion

What is an appropriate condition for terminating the weight update loop? One choice is to

continue training until the error E on the training examples falls below some predetermined

threshold.

To see the dangers of minimizing the error over the training data, consider how the error E

varies with the number of weight iterations

Machine Learning 15CS73

22 Deepak D, Asst. Prof., Dept. of CS&E, Canara Engineering College, Mangaluru

 Consider first the top plot in this figure. The lower of the two lines shows the

monotonically decreasing error E over the training set, as the number of gradient descent

iterations grows. The upper line shows the error E measured over a different validation

set of examples, distinct from the training examples. This line measures the

generalization accuracy of the network-the accuracy with which it fits examples beyond

the training data.

 The generalization accuracy measured over the validation examples first decreases, then

increases, even as the error over the training examples continues to decrease. How can

this occur? This occurs because the weights are being tuned to fit idiosyncrasies of the

training examples that are not representative of the general distribution of examples.

The large number of weight parameters in ANNs provides many degrees of freedom for

fitting such idiosyncrasies

 Why does overfitting tend to occur during later iterations, but not during earlier

iterations?

By giving enough weight-tuning iterations, BACKPROPAGATION will often be able

to create overly complex decision surfaces that fit noise in the training data or

unrepresentative characteristics of the particular training sample.

