# -*- coding: utf-8 -*- """ Created on Fri Aug 31 10:50:02 2018 @author: Deepak.D, Canara Engineering College, Mangaluru """ import numpy as np X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float) # two inputs [sleep,study] y = np.array(([92], [86], [89]), dtype=float) # one output [Expected % in Exams] X = X/np.amax(X,axis=0) # maximum of X array longitudinally y = y/100 #Sigmoid Function def sigmoid (x): return 1/(1 + np.exp(-x)) #Derivative of Sigmoid Function def derivatives_sigmoid(x): return x * (1 - x) #Variable initialization epoch=5000 #Setting training iterations lr=0.1 #Setting learning rate inputlayer_neurons = 2 #number of features in data set hiddenlayer_neurons = 3 #number of hidden layers neurons output_neurons = 1 #number of neurons at output layer #weight and bias initialization wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons)) #weight of the link from input node to hidden node bh=np.random.uniform(size=(1,hiddenlayer_neurons)) # bias of the link from input node to hidden node wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons)) #weight of the link from hidden node to output node bout=np.random.uniform(size=(1,output_neurons)) #bias of the link from hidden node to output node #draws a random range of numbers uniformly of dim x*y for i in range(epoch): #Forward Propogation hinp1=np.dot(X,wh) hinp=hinp1 + bh hlayer_act = sigmoid(hinp) outinp1=np.dot(hlayer_act,wout) outinp= outinp1+ bout output = sigmoid(outinp) #Backpropagation EO = y-output outgrad = derivatives_sigmoid(output) d_output = EO* outgrad EH = d_output.dot(wout.T) #how much hidden layer weights contributed to error hiddengrad = derivatives_sigmoid(hlayer_act) d_hiddenlayer = EH * hiddengrad # dotproduct of nextlayererror and currentlayerop wout += hlayer_act.T.dot(d_output) *lr wh += X.T.dot(d_hiddenlayer) *lr print("Input: \n" + str(X)) print("Actual Output: \n" + str(y)) print("Predicted Output: \n" ,output)