6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Naive Bayes algorithms for learning and classifying text

LEARN_NAIVE_BAYES_TEXT (Examples, V)

Examples is a set of text documents along with their target values. V is the set of all possible target values. This function learns the probability terms $P(w_k | v_j)$, describing the probability that a randomly drawn word from a document in class v_j will be the English word w_k . It also learns the class prior probabilities $P(v_j)$.

- 1. collect all words, punctuation, and other tokens that occur in Examples
 - *Vocabulary* ← *c* the set of all distinct words and other tokens occurring in any text document from *Examples*
- 2. calculate the required $P(v_j)$ and $P(w_k/v_j)$ probability terms
 - For each target value v_j in V do
 - $docs_j \leftarrow$ the subset of documents from *Examples* for which the target value is vj
 - $P(v_j) \leftarrow | docs_j | / | \text{Examples} |$
 - $Text_j \leftarrow a$ single document created by concatenating all members of $docs_j$
 - $n \leftarrow \text{total number of distinct word positions in } Text_j$
 - for each word w_k in *Vocabulary*
 - $n_k \leftarrow$ number of times word w_k occurs in $Text_j$
 - $P(w_k/v_j) \leftarrow (n_k+1)/(n+|Vocabulary/)$

CLASSIFY_NAIVE_BAYES_TEXT (Doc)

Return the estimated target value for the document Doc. a_i denotes the word found in the i^{th} position within Doc.

- positions \leftarrow all word positions in *Doc* that contain tokens found in *Vocabulary*
- Return V_{NB} , where

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_{i \in positions} P(a_i | v_j)$$

Machine Learning Laboratory 17CSL76

Data set:

	Text Documents	Label
1	I love this sandwich	pos
2	This is an amazing place	pos
3	I feel very good about these beers	pos
4	This is my best work	pos
5	What an awesome view	pos
6	I do not like this restaurant	neg
7	I am tired of this stuff	neg
8	I can't deal with this	neg
9	He is my sworn enemy	neg
10	My boss is horrible	neg
11	This is an awesome place	pos
12	I do not like the taste of this juice	neg
13	I love to dance	pos
14	I am sick and tired of this place	neg
15	What a great holiday	pos
16	That is a bad locality to stay	neg
17	We will have good fun tomorrow	pos
18	I went to my enemy's house today	neg

Machine Learning Laboratory 17CSL76

<u>Program:</u>

import pandas as pd

msg=pd.read csv('naivetext.csv',names=['message','label'])

print('The dimensions of the dataset', msg.shape)

msg['labelnum']=msg.label.map({'pos':1,'neg':0})
X=msg.message
y=msg.labelnum

print(X)
print(y)

#splitting the dataset into train and test data

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y)

print ('\n The total number of Training Data :',ytrain.shape)
print ('\n The total number of Test Data :',ytest.shape)

#output of count vectoriser is a sparse matrix

from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer() xtrain_dtm = count_vect.fit_transform(xtrain) xtest_dtm=count_vect.transform(xtest) print('\n The words or Tokens in the text documents \n') print(count vect.get feature names())

```
df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get_fe
ature names())
```

Training Naive Bayes (NB) classifier on training data. from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB().fit(xtrain_dtm,ytrain) predicted = clf.predict(xtest dtm)

#printing accuracy, Confusion matrix, Precision and Recall
from sklearn import metrics
print('\n Accuracy of the classifer is',
metrics.accuracy score(ytest,predicted))

```
Machine Learning Laboratory 17CSL76
```

```
print('\n Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
```

```
print('\n The value of Precision' ,
metrics.precision_score(ytest,predicted))
```

```
print('\n The value of Recall' ,
metrics.recall_score(ytest,predicted))
```

Output:

The dimensions of the dataset (18, 2)

- 0 I love this sandwich
- 1 This is an amazing place
- 2 I feel very good about these beers
- 3 This is my best work
- 4 What an awesome view
- 5 I do not like this restaurant
- 6 I am tired of this stuff
- 7 I can't deal with this
- 8 He is my sworn enemy
- 9 My boss is horrible
- 10 This is an awesome place
- 11 I do not like the taste of this juice
- 12 I love to dance
- 13 I am sick and tired of this place
- 14 What a great holiday
- 15 That is a bad locality to stay
- 16 We will have good fun tomorrow
- 17 I went to my enemy's house today

Name: message, dtype: object

Name: labelnum, dtype: int64

The total number of Training Data: (13,)

The total number of Test Data: (5,)

The words or Tokens in the text documents

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'can', 'deal', 'do', 'enemy', 'feel', 'fun', 'good', 'great', 'have', 'he', 'holiday', 'house', 'is', 'like', 'love', 'my', 'not', 'of', 'place', 'restaurant', 'sandwich', 'sick', 'sworn', 'these', 'this', 'tired', 'to', 'today', 'tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with', 'work']

Accuracy of the classifier is 0.8

Confusion matrix

[[2 1]

[0 2]]

The value of Precision 0.666666666666666666

The value of Recall 1.0

Basic knowledge

Confusion Matrix

		Actual						
		Positive	Negative					
cted	Positive	True Positive	False Positive					
Predi	Negative	False Negative	True Negative					

True positives: data points labelled as positive that are actually positive False positives: data points labelled as positive that are actually negative True negatives: data points labelled as negative that are actually negative False negatives: data points labelled as negative that are actually positive

> Recall = <u> *True Positive*</u> *True Positive*+*False Negative*

> > = True Positive Total Actual Positive

		Actual					
		Positive	Negative				
ted	Positive	True Positive	False Positive				
Predic	Negative	False Negative	True Negative				

Precision = <u> *True Positive*</u> *True Positive*+*False Positive*

> = True Positive Total Predicted Positive

		Actual					
		Positive	Negative				
cted	Positive	True Positive	False Positive				
Predi	Negative	False Negative	True Negative				
			-				

Example:

		Actual						
		Posit	ive	Negative	9			
cted	Positive	1	TP	3	FP			
redi	Negative	0		1	~			
			FN		TN			

$$Precision = \frac{TP}{TP + FP} = \frac{1}{1+3} = 0.25$$

$$\text{Recall} = \frac{TP}{TP + FN} = \frac{1}{1+0} = 1$$

Accuracy: how often is the classifier correct?

Accuracy =
$$\frac{\text{TP} + \text{TN}}{\text{Total}} = \frac{1+1}{5} = 0.4$$

Machine Learning Laboratory 17CSL76

Example: Movie Review

Doc	Text	Class
1	I loved the movie	+
2	I hated the movie	-
3	a great movie. good movie	+
4	poor acting	-
5	great acting. good movie	+

Unique word

< I, loved, the, movie, hated, a, great, good, poor, acting>

Doc	Ι	loved	the	movie	hated	а	great	good	poor	acting	Class
1	1	1	1	1							+
2	1		1	1	1						-
3				2		1	1	1			+
4									1	1	-
5				1			1	1		1	+

Doc	Ι	loved	the	movie	hated	а	great	good	poor	acting	Class
1	1	1	1	1							+
3				2		1	1	1			+
5				1			1	1		1	+

 $P(+) = \frac{3}{5} = 0.6$

$$P(l \mid +) = \frac{1+1}{14+10} = 0.0833 \qquad P(a \mid +)$$

$$P(loved \mid +) = \frac{1+1}{14+10} = 0.0833 \qquad P(green = 0.0833)$$

$$P(the \mid +) = \frac{1+1}{14+10} = 0.0833 \qquad P(green = 0.0833)$$

$$P(movie \mid +) = \frac{4+1}{14+10} = 0.2083 \qquad P(preen = 0.0833)$$

$$P(hated \mid +) = \frac{0+1}{14+10} = 0.0416 \qquad P(action = 0.0416)$$

$$P(a \mid +) = \frac{1+1}{14+10} = 0.0833$$

$$P(great \mid +) = \frac{2+1}{14+10} = 0.125$$

$$P(good \mid +) = \frac{2+1}{14+10} = 0.125$$

$$0 + 1$$

$$P(poor \mid +) = \frac{0+1}{14+10} = 0.0416$$

$$P(acting \mid +) = \frac{1+1}{14+10} = 0.0833$$

= 0.125

Doc	Ι	loved	the	movie	hated	а	great	good	poor	acting	Class
2	1		1	1	1						-
4									1	1	-

 $P(-) = \frac{2}{5} = 0.4$

$$P(I \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(a \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(loved \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(great \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(great \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(good \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(poor \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(acting \mid -) = \frac{1+1}{6+10} = 0.125$$

Let's classify the new document

I hated the poor acting

If
$$V_j = +$$

then,

= P(+) P(I | +) P(hated | +) P(the | +) P(poor | +) P(acting | +)

= 0.6 * 0.0833 * 0.0416 * 0.0833 * 0.0416 * 0.0833

 $= 6.03 \text{ X} 10^{-2}$

If $V_j = -$

then,

= P(-) P(I | -) P(hated | -) P(the | -) P(poor | -) P(acting | -)

= 0.4 * 0.125 * 0.125 * 0.125 * 0.125 * 0.125

 $= 1.22 \text{ X} 10^{-5}$

= $1.22 \times 10^{-5} > 6.03 \times 10^{-2}$ So, the new document belongs to (-) class